Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
nhớ like
\(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)\(\left(đk:x\in R\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=2\\x=-8\end{cases}}\\\orbr{\begin{cases}x=1\\x=-7\end{cases}}\end{cases}}\)
\(\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)
\(\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)
Vậy \(S=\left\{1;2;-8;-7\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)
a: =>|x-3|=4-x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(4-x-x+3\right)\left(4-x+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(7-2x\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{2}\)
b: =>|x-5|=3-19x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(x-5-3+19x\right)\left(x-5+3-19x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(20x-8\right)\left(-18x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{1}{9}\right\}\)
c: =>\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
=>căn x-3=0
=>x=3
\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)
=> Phương trình đã cho là phương trình vô nghiệm
thôi cho sửa lại ...
\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
\(\left(2x^2+3\right)^2-10x^2-15x=0\)
\(\Leftrightarrow4x^4+12x^2+9-10x^2-15x=0\)
\(\Leftrightarrow4x^4+2x^2-15x+9=0\)
\(\Leftrightarrow4x^4-4x^2+6x^2-6x-9x+9=0\)
\(\Leftrightarrow4x^2\left(x^2-1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow4x^2\left(x-1\right)\left(x+1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[4x\left(x+1\right)+6x-9\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2+10x-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2+10x+\frac{25}{4}+\frac{11}{4}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(2x+\frac{5}{2}\right)^2+\frac{11}{4}\right]=0\)
Vì \(\left(2x+\frac{5}{2}\right)^2+\frac{11}{4}>0\)
=> x - 1 = 0
=> x = 1
Vậy x = 1