Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:Giá trị tuyệt đối của một đa thức luôn luôn >=0
Mặt khác, ta có -2x2-2=-2(x2+1) luôn luôn <0(vì x2+1 >=1>0),(-2>0)
-->không thể có giá trị của x phù hợp
Ta có: \(\left|2x^2-5x+3\right|=-2x^2-2\)
\(\Leftrightarrow\left|2x^2-5x+3\right|=-\left(2x^2+2\right)\)
mà \(\left|2x^2-5x+3\right|\ge0\forall x\)
và \(-\left(2x^2+2\right)< 0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(S=\varnothing\)
\(\left(x^2+4x+8\right)\left(x^2+5x+8\right)=2x^2\left(1\right)\)
\(\Leftrightarrow x^4+5x^3+8x^2+4x^3+20x^2+32x+8x^2+40x+64-2x^2=0\)
\(\Leftrightarrow x^4+5x^3+4x^3+8x^2+20x^2+8x^2-2x^2+40x+32x+64=0\)
\(\Leftrightarrow x^4+9x^3+34x^2+72x+64=0\)
\(\Leftrightarrow x^4+2x^3+7x^3+14x^2+20x^2+40x+32x+64=0\)
\(\Leftrightarrow x^3\left(x+2\right)+7x^2\left(x+2\right)+20x\left(x+2\right)+32\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+7x^2+20x+32\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2+3x^2+12x+8x+32\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x+4\right)+3x\left(x+4\right)+8\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+3x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\\x^2+3x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\\vô.nghiệm\left(\Delta=9-32=-23< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\) là nghiệm của phương trình \(\left(1\right)\)
Ta có:
⇔ 20x – 80 – 12 x 2 – 6x > 4x – 12 x 2 – 15x
⇔ 20x – 12 x 2 – 6x – 4x + 12x2 + 15x > 80
⇔ 25x > 80
⇔ x > 3,2
Vậy tập nghiệm của bất phương trình là {x|x > 3,2}
ta có phương trình tương đương
\(4x^2-10x-6=0\)
\(\Leftrightarrow4x^2-2.2.\frac{5}{2}x+\frac{25}{4}=\frac{49}{4}\)
\(\Leftrightarrow\left(2x-\frac{5}{2}\right)^2=\left(\frac{7}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{5}{2}=\frac{7}{2}\\2x-\frac{5}{2}=-\frac{7}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{2}\end{cases}}}\)
vậy phương trình có hai nghiệm như trên
-2x2 + 5x + 3 = 0
<=> -2x2 + 6x - x + 3 = 0
<=> -2x( x - 3 ) - ( x - 3 ) = 0
<=> ( x - 3 )( -2x - 1 ) = 0
<=> x - 3 = 0 hoặc -2x - 1 = 0
<=> x = 3 hoặc x = -1/2
Vậy tập nghiệm của phương trình là : S = { 3 ; -1/2 }