Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶT x-1=a , x+3=b (a,b cùng dấu)
\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)
\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)
\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)
\(\Leftrightarrow a^2b^2-20ab+64=0\)
\(\Leftrightarrow\left(ab-10\right)^2-36=0\)
\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)
Đến đây đơn giản rồi bn tự giải nhé
ĐK:....\(\frac{x+3}{x-1}\ge0\)
<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)
<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)
Em tự làm tiếp nhé
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
\(\sqrt{x^2-6x+9}\) \(-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)
\(\Leftrightarrow\left|x-3\right|-\sqrt{3}=0\)
\(\Leftrightarrow\left|x-3\right|=\sqrt{3}\)
th1 \(x\ge3\Rightarrow x-3=\sqrt{3}\Rightarrow x=3+\sqrt{3}\)
th2 \(x< 3\Rightarrow3-x=\sqrt{3}\Rightarrow x=3-\sqrt{3}\)
( 2x4-4x3+2x2) +(2x2-2x) +2m-1=0
2x2(x-1)2 + 2x(x-1)+2m-1 =0
đặt x(x-1)=t
Ta được 2t2+2t+2m-1=0
\(\Delta t\)= 22-4.2.(2m-1)= 4-16m+8=12-16m
Để pt có nghiệm thì \(\Delta t\)\(\ge\)0
\(\Leftrightarrow\)12-16m \(\ge\)0
\(\Leftrightarrow\)m \(\le\)3/4
Vậy,....
- để phương trình có 2 nghiêm thì \(\Delta>0\)\(\Leftrightarrow\Delta=m^2+4.4.15\ge240\)nên phương trình có nghiệm với mọi m
- \(\Leftrightarrow\hept{\begin{cases}m\ne0\\\Delta^'=2^2+5m>0\end{cases}\Leftrightarrow m>-\frac{4}{5}}\)
Bạn ko biết giải pt à? ....
Y chang bạn hoàng anh tuấn nhưng đáp số đc rút gọn nhé:
--------------
\(\Delta'=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_{..1}=\frac{2-\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\frac{2-\sqrt{3}+1}{2}=\frac{3-\sqrt{3}}{2}\)
\(x_{..2}=\frac{2+\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\frac{2+\sqrt{3}-1}{2}=\frac{1+\sqrt{3}}{2}\)
\(2x^2-4x+\sqrt{3}=0\Rightarrow\Delta^'=4-2\sqrt{3}\)
Nghiệm của phương trình là :
\(\orbr{\begin{cases}x_1=\frac{2-\sqrt{4-2\sqrt{3}}}{2}\\x_2=\frac{2+\sqrt{4-2\sqrt{3}}}{2}\end{cases}}\)