K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

\(\sqrt{2x+15}=32x^2+32x-20\)(1)

ĐK : \(x\ge-\dfrac{15}{2}\)

\(\left(1\right)\Leftrightarrow\sqrt{2x+15}-4=32x^2+32x-24\)

\(\Leftrightarrow\dfrac{2x-1}{\sqrt{2x+15}+4}=\left(2x-1\right)\left(2x+3\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(\dfrac{1}{\sqrt{2x+15}+4}-\left(2x+3\right)\right)=0\)

Làm tiếp nhé!!

31 tháng 1 2017

Giải bài 4 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Điều kiện xác định: 2x – 1 ≠ 0 ⇔ x ≠ 1/2.

Quy đồng và bỏ mẫu chung ta được:

Phương trình (2) ⇔ 2(3x2 – 2x + 3) = (2x – 1)(3x – 5)

⇔ 6x2 – 4x + 6 = 6x2 – 10x – 3x + 5

⇔ 9x = –1

⇔ x = –1/9 (thỏa mãn đkxđ)

Vậy phương trình có nghiệm là x = –1/9.

13 tháng 1 2019

Đặt  a = x ;   b = y ;   a ; b ≥ 0   ⇒ a 2 = x 2 ;   b 2 = y 2

Khi đó hệ phương trình đã cho trở thành:  a + b = 3               ( 1 ) 2 ( a 2 + b 2 ) = 9     ( 2 )

Từ (1) suy ra:  b = 3 - a thay vào (2) ta được:

2 . a 2 + 3 - a 2 = 9 ⇔ 2 2 a 2 - 6 a + 9 = 9 ⇔ 4 a 2 - 12 a + 9 = 0 ⇔ a = 3 2

Với a = 3 2 ⇒ b = 3 2 .

Khi đó;   x = 3 2 ;   y = 3 2 ⇒ x = ± 3 2 ;   y = ± 3 2

Suy ra, hệ phương trình đã cho có 4 nghiệm:

3 2 ; 3 2 ;   3 2 ; - 3 2 ;   - 3 2 ; 3 2 ;   - 3 2 ; - 3 2

Chọn C.

16 tháng 1 2018

Giải bài tập Toán 10 | Giải Toán lớp 10

 Giải bài tập Toán 10 | Giải Toán lớp 10

Vẽ các đường thẳng:

(d1): 2x – y = 3 hay y = 2x – 3

(d2): -10x + 5y = 8 hay 5y = 10x + 8

Lấy điểm O(0;0), ta thấy O không thuộc cả 2 đường thẳng trên và 2.0-0 ≤ 3 và - 10.0 + 5.0 ≤ 8 nên phần được giới hạn bởi 2 đường thẳng trên chứa điểm O( phần ko tô đậm) là nghiệm của hệ bất phương trình.

22 tháng 2 2017

Ta có D = m − 1 2 m = m 2 + 2 > 0 , ∀ m ∈ R nên hệ phương trình luôn có nghiệm duy nhất

D x = 3 − 1 9 m = 3 m + 9 ;   D y = m 3 2 9 = 9 m − 6

Vậy hệ luôn có nghiệm duy nhất là: x = 3 m + 9 m 2 + 2 y = 9 m − 6 m 2 + 2

Ta có:  A = 3 x − y = 3 3 m + 9 m 2 + 2 − 9 m − 6 m 2 + 2 = 33 m 2 + 2

Vì m Z nên để A nguyên thì  m 2 + 2  là ước của 33 mà  m 2 + 2 ≥ 2  nên ta có các trường hợp sau:

Mà m nguyên dương nên  m ∈ 1 ; 3

Vậy có 2 giá trị nguyên dương của m để A nguyên.

Đáp án cần chọn là: B

2x^2-x-15>0

=>2x^2-6x+5x-15>0

=>(x-3)(2x+5)>0

=>x>3 hoặc x<-5/2

11 tháng 2 2023

\(\Rightarrow3-3x+x^2+2x-15\ge0\)

\(\Rightarrow x^2-x-12\ge0\)

Vì \(f\left(x\right)=x^2-x-12\) có 2 nghiệm pb \(x_1=4;x_2=-3\)  và \(a=1>0\)

Bảng xét dấu :

 \(x\)  \(-\infty\)      \(-3\)            \(4\)         \(+\infty\)
 \(f\left(x\right)\)                   \(+0-0+\)

Vậy bpt có tập nghiệm \(S=\left(-\infty;-3\right)\cup\left(4;+\infty\right)\)

 

12 tháng 2 2023

còn cái mẫu −x2−2x+15 thì sao bạn

 
2 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x^2-8x+15\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le-5\\x=3\end{cases}}\)

Với x = 8 thì (*) thỏa mãn \(\Rightarrow x=3\)là 1 nghiệm của bất phương trình.

\(\left(^∗\right)\Leftrightarrow\sqrt{\left(x-5\right)\left(x-3\right)}+\sqrt{\left(x+5\right)\left(x-3\right)}\le\sqrt{\left(x-3\right)\left(4x-6\right)}\)(1)

Với \(x\ge5\Rightarrow x-3\ge2>0\)hay \(x-3>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}\le\sqrt{4x-6}\)\(\Leftrightarrow2x+2\sqrt{x^2-25}\le4x-6\)

\(\Leftrightarrow\sqrt{x^2-25}\le x-3\Leftrightarrow x^2-25=x^2-6x+9\Leftrightarrow x\le\frac{17}{3}\)

\(\Rightarrow5\le x\le\frac{17}{3}\)

Với \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x\ge8>0\)hay \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{\left(5-x\right)\left(3-x\right)}+\sqrt{\left(-5-x\right)\left(3-x\right)}\)

\(\le\sqrt{\left(3-x\right)\left(4-6x\right)}\)

\(\Leftrightarrow\sqrt{5-x}+\sqrt{-x-5}\le\sqrt{6-4x}\)

\(\Leftrightarrow-2x+2\sqrt{\left(5-x\right)\left(-x-5\right)}\le6-4x\)

\(\Leftrightarrow\sqrt{x^2-25}\le3-x\Leftrightarrow x^2-25\le x^2-6x+9\)

\(\Leftrightarrow x\le\frac{17}{3}\Rightarrow x\le-5\)

Từ đó suy ra tập nghiệm của bpt là \(x\in(-\infty;-5]\mu\left\{3\right\}\mu\left[5;\frac{17}{3}\right]\)