Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)
\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)
Đặt \(2^x=a\Rightarrow4^x=a^2\)(a>0)
\(PT\Leftrightarrow\left(a-8\right)^3+\left(a^2+13\right)^3=\left(a^2+a+5\right)^3\)
Đặt \(\left\{{}\begin{matrix}a-8=X\\a^2+13=Y\end{matrix}\right.\)(Y>0)
\(PT\Leftrightarrow X^3+Y^3=\left(X+Y\right)^3\Leftrightarrow3XY\left(X+Y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}X=0\\Y=0\\X+Y=0\end{matrix}\right.\)
(*) \(X=0\Leftrightarrow a-8=0\Leftrightarrow a=8\Leftrightarrow2^x=8\Leftrightarrow x=3\)
(*) Y=0( Loại )
(*) \(X+Y=0\Leftrightarrow a^2+a+5=0\)( vô nghiệm)
Vậy PT có nghiệm duy nhất x=3
a: =>|x-3|=4-x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(4-x-x+3\right)\left(4-x+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(7-2x\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{2}\)
b: =>|x-5|=3-19x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(x-5-3+19x\right)\left(x-5+3-19x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(20x-8\right)\left(-18x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{1}{9}\right\}\)
c: =>\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
=>căn x-3=0
=>x=3
\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)
=> Phương trình đã cho là phương trình vô nghiệm
thôi cho sửa lại ...
\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
a) \(x^3+x^2+x=-\frac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow2x^3+\left(x^3+3x^2+3x+1\right)=0\)
\(\Leftrightarrow2x^3=-\left(x+1\right)^3\)
\(\Leftrightarrow x.\sqrt[3]{2}=-x-1\)
\(\Leftrightarrow x+x.\sqrt[3]{2}=-1\)
\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-1\)
\(\Leftrightarrow x=\frac{-1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2+4x=-\frac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2+12x=-8\)
\(\Leftrightarrow2x^3+\left(x^3+6x^2+12x+8\right)=0\)
\(\Leftrightarrow2x^3=-\left(x+2\right)^3\)
\(\Leftrightarrow x.\sqrt[3]{2}=-x-2\)
\(\Leftrightarrow x\left(1+\sqrt[3]{2}\right)=-2\)
\(\Leftrightarrow x=-\frac{2}{1+\sqrt[3]{2}}\)
Đề thiếu bn ơi