Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2(x+1)=26
=>x+1=13
=>x=12
b: =>(6x)^3=125
=>6x=5
=>x=5/6(loại)
c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)
=>3^x=9
=>x=2
d: -2x+13 chia hết cho x+1
=>-2x-2+15 chia hết cho x+1
=>15 chia hết cho x+1
=>x+1 thuộc {1;3;5;15}
=>x thuộc {0;2;4;14}
e: 4x+11 chia hết cho 3x+2
=>12x+33 chia hết cho 3x+2
=>12x+8+25 chia hết cho 3x+2
=>25 chia hết cho 3x+2
=>3x+2 thuộc {1;-1;5;-5;25;-25}
mà x là số tự nhiên
nên x=1
1:
a: Đặt A=2^2024-2^2023-...-2^2-2-1
Đặt B=2^2023+2^2022+...+2^2+2+1
=>2B=2^2024+2^2023+...+2^3+2^2+2
=>B=2^2024-1
=>A=2^2024-2^2024+1=1
c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)
\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)
\(a,|2x-2019|=1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2019=1\\2x-2019=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=2020\\2x=2018\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1010\\x=1009\end{cases}}\)
Vậy ............
\(b,\left(2-x\right)^5=-32\)
\(\Leftrightarrow\left(2-x\right)^5=\left(-2\right)^5\)
\(\Leftrightarrow2-x=-2\)
\(\Leftrightarrow x=4\)
Vậy ..........
Bài 1
\(2019\left(3x-9\right)=0\)
\(3x-9=0\)
\(3x=9\)
\(x=3\)
Bài 2
\(2020\left(8-2x\right)=0\)
\(8-2x=0\)
\(2x=8\)
\(x=4\)
Lời giải:
$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$
$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$
$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$
$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$
$\Rightarrow x=3$
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2020}=2^{2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{2024}-8(1)$
$2^x(2+2^2+2^3+...+2^{2021})=2^{2025}-16(2)$
Lấy $(2)$ trừ $(1)$ ta có:
$2^x(2^{2021}-1)=2^{2025}-16-(2^{2024}-8)=2^{2024}(2-1)-8$
$2^x(2^{2021}-1)=2^{2024}-8=2^3(2^{2021}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
`2^(x) + 2^(x+1) + 2(x+2) + ... + 2^(x+2019) = 2^(2023) - 8`
Đặt `A = 2^(x) + 2^(x+1) + 2(x+2) + ... + 2^(x+2019)`
`2A = 2^(x+1) + 2^(x+2) + 2(x+3) + ... + 2^(x+2020)`
`2A - A = (2^(x+1) + 2^(x+2) + 2(x+3) + ... + 2^(x+2020)) - ( 2^(x) + 2^(x+1) + 2(x+2) + ... + 2^(x+2019))`
`A = 2^(x+2020) - 2^(x)`
`A = 2^x . (2^(2020) - 1)`
Mà `A = 2^(2023) - 8 = 2^3 . (2^(2020) - 1) `
`=> x = 3`
Vậy `x = 3`