\(2sin^22x+2sin^2x=3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2021

\(\Leftrightarrow2\left(1-cos^22x\right)=2+\left(1-2sin^2x\right)\)

\(\Leftrightarrow2-2cos^22x=2+cos2x\)

\(\Leftrightarrow2cos^22x+cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

8 tháng 9 2022

số 3 ban đầu đã đi đâu v

 

NV
25 tháng 7 2020

e/

\(\Leftrightarrow3\left(1-cos6x\right)-\left(2cos^26x-1\right)=4\)

\(\Leftrightarrow-2cos^26x-3cos6x=0\)

\(\Leftrightarrow cos6x\left(2cos6x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos6x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow6x=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow2cos^22x-3cos2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)

Nghiệm xấu quá :(

NV
25 tháng 8 2020

a/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0\)

\(\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0\)

\(\Leftrightarrow1-cos4x.cos2x-2cos^22x=0\)

\(\Leftrightarrow2cos^22x-1+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

NV
25 tháng 8 2020

d/

ĐKXĐ: \(sin2x\ne0\) \(\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow1+\frac{cos2x}{sin2x}=\frac{1-cos2x}{sin^22x}\)

\(\Leftrightarrow sin^22x+sin2x.cos2x=1-cos2x\)

\(\Leftrightarrow sin^22x-1+sin2x.cos2x+cos2x=0\)

\(\Leftrightarrow-cos^22x+sin2x.cos2x+cos2x=0\)

\(\Leftrightarrow cos2x\left(sin2x-cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x-cos2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\left(l\right)\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

d/

ĐKXĐ: ...

\(\Leftrightarrow tanx-1+cos2x=0\)

\(\Leftrightarrow\frac{sinx}{cosx}-1-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow\frac{sinx-cosx}{cosx}-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{cosx}-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\\frac{1}{cosx}-sinx-cosx=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Rightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow1-sinx.cosx-cos^2x=0\)

\(\Leftrightarrow sin^2x-sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow sinx=0\Rightarrow x=k\pi\)

NV
25 tháng 7 2020

c/

\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)

\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)

NV
26 tháng 5 2019

\(y=2\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+cos^22x=cos^22x-cos2x+1\)

\(=\left(cos2x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos2x=\frac{1}{2}\)

\(y=cos^22x-2cos2x+cos2x-2+3\)

\(y=\left(cos2x-2\right)\left(cos2x+1\right)+3\)

Do \(-1\le cos2x\le1\Rightarrow\left\{{}\begin{matrix}cos2x-2< 0\\cos2x+1\ge0\end{matrix}\right.\) \(\Rightarrow\left(cos2x-2\right)\left(cos2x+1\right)\le0\)

\(\Rightarrow y\le3\Rightarrow y_{max}=3\) khi \(cos2x=-1\)

NV
26 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
26 tháng 7 2020

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow2cos4x.sin3x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)

\(\Leftrightarrow sinx+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

NV
27 tháng 8 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)

\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

b/

\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
10 tháng 7 2020

a/ Đặt \(sinx=t\Rightarrow-1\le t\le1\)

Phương trình trở thành:

\(2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2>1\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow sinx=-cos3x\)

\(\Leftrightarrow sinx=sin\left(3x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3x-\frac{\pi}{2}+k2\pi\\x=\pi-3x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)