Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt \(t=x^2\) (t\(\ge0\))
=>\(t^2-t-2=0\)=>\(\orbr{\begin{cases}t=2\\t=-1\left(loại\right)\end{cases}}\)
=>\(x^2=2\)=>\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
a) \(\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{3}\end{cases}}\)
b)\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
c)\(x=\frac{47}{6}\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)
\(\Rightarrow\)\(3\le x\le5\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại )
Do đó :
\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)
Vậy \(a=1\) khi \(3\le x\le5\)
Chúc bạn học tốt ~
Bài 1:
Ta thấy \(|x-3|\geq 0; |5x-1|\geq 0, \forall x\in\mathbb{R}\)
Do đó để tổng \(2|x-3|+|5x-1|=0\) thì \(|x-3|=|5x-1|=0\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ x=\frac{1}{5}\end{matrix}\right.\) (vô lý)
Do đó PT vô nghiệm
Bài 2: Ta xét các khoảng, đoạn giá trị của $x$ để phá trị tuyệt đối.
\(2|x|-|x+1|=2\)
TH1: \(x\geq 0\Rightarrow \left\{\begin{matrix} |x|=x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:
\(2x-(x+1)=2\Leftrightarrow x=3\) (thỏa mãn)
TH2: \(0>x\geq -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:
\(-2x-(x+1)=2\Leftrightarrow x=-1\) (t/m)
TH3: \(x< -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=-(x+1)\end{matrix}\right.\). PT trở thành:
\(-2x+(x+1)=2\Leftrightarrow x=-1\) (loại vì $x< -1$)
Vậy $x=-1$ hoặc $x=3$
Nếu \(x< -a\) thì ta có phương trình sau:
\(-2\left(x+a\right)+x\left(x-2a\right)=3a\\ \Leftrightarrow x=-7a\)
Nếu \(x\ge2a\) thì ta có phương trình sau:
\(2\left(x+a\right)-\left(x-2a\right)=3a\\ \Leftrightarrow x=-a\)
Nếu \(-a\le x\le2a\) thì ta có phương trình sau:
\(2\left(x+a\right)+\left(x-2a\right)=3a\\\Leftrightarrow x=a\)