K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Lấy phương trình trên trừ phương trình dưới thu được:

\(2\left(y-x\right)=-2\Rightarrow y=x-1\)

Thay vào phương trình dưới suy ra:

\(2\sqrt{2}x=4\sqrt{2}0\Rightarrow x=2\Rightarrow y=1\)

13 tháng 1 2021

Sửa lại tí. \(2\sqrt{2}x=4\sqrt{2}\Rightarrow x=2\Rightarrow y=1\)

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

NV
15 tháng 3 2022

ĐKXĐ: \(\left[{}\begin{matrix}x=0\\x\ge3\end{matrix}\right.\)

Với \(x=0\) là nghiệm

Với \(x\ge3\), chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{x+1}+\sqrt{x+2}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}+\dfrac{5}{\sqrt{x+2}+\sqrt{x-3}}=0\) (vô nghiệm do vế trái luôn dương)

Vậy pt có nghiệm duy nhất \(x=0\)

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

11 tháng 4 2023

ĐKXĐ : \(x\ge-2\)

\(\sqrt{1+\left(x+2\right).\sqrt{1+\left(x+3\right).\left(x+5\right)}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\sqrt{x^2+8x+16}}=2023x+1\)

\(\Leftrightarrow\sqrt{1+\left(x+2\right).\left(x+4\right)}=2023x+1\) (Do \(x\ge-2\Rightarrow x+4>0\))

\(\Leftrightarrow\sqrt{x^2+6x+9}=2023x+1\)

\(\Leftrightarrow x+3=2023x+1\) (Do \(x\ge-2\Rightarrow x+3>0\)

\(\Leftrightarrow x=\dfrac{1}{1011}\)(tm) 

Vậy tập nghiệm \(S=\left\{\dfrac{1}{1011}\right\}\)

 

4 tháng 2 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)x-\left(\sqrt{2}+1\right)y=\left(\sqrt{2+1}\right)\sqrt{2}\\x+\left(\sqrt{2+1}\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\left(\sqrt{2}+1\right)y=2+\sqrt{2}\left(1\right)\\x+\left(\sqrt{2}+1\right)y=1\left(2\right)\end{matrix}\right.\)

Cộng từng vế của (1) và (2) ta được: \(\Rightarrow2x=3+\sqrt{2}\Leftrightarrow x=\dfrac{3+\sqrt{2}}{2}\)

Thay vào (2) ta được: \(\Rightarrow\dfrac{3+\sqrt{2}}{2}+\left(\sqrt{2}+1\right)y=1\Leftrightarrow\left(\sqrt{2}+1\right)y=1-\dfrac{3+\sqrt{2}}{2}=\dfrac{-\sqrt{2}-1}{2}\)

\(\Leftrightarrow y=\dfrac{-\sqrt{2}-1}{2\left(\sqrt{2}+1\right)}=\dfrac{-1}{2}\) Vậy...