\(25\sqrt{25x+4}+4=x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

ĐK:x>=-4/25

ta cộng cả 2 vế với 25x được 25x+4 +25can(25x+4)-x^2-25x=0

                                          (25x+4+25can(25x+4)+625/4)-(x^2 +25x+625/4)=0

                                           (can(25x+4)+25/2)^2-(x+25/2)^2=0

                                          (x+can(25x+4)+25)(can(25x+4)-x)=0

+,Xét :          x+can(25x+4)+25=0

                   can(25x+4)=-x-25 ĐK x<=25

bình phương là ra

+, Xét           can(25x+4)-x=0

                   can(25x+4)=x

bình phương 2 vế là ra

            

                                     

  

19 tháng 8 2016

a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)

b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=> 3 = 0 (vô lý)

=> pt vô nghiệm.

 

19 tháng 8 2016

c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)

d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))

\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)

Vậy pt vô nghiệm.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

15 tháng 8 2020

DK: \(x\ge1\)

\(PT\Leftrightarrow\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\\ \Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\\ \Leftrightarrow2-2\sqrt{x-1}=0\\ \Leftrightarrow1-\sqrt{x-1}=0\\\Leftrightarrow \sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(TM\right)\)

Vậy phương trình đã cho có 1 nghiệm là x = 2

17 tháng 11 2016

a/ Điều kiện xác định : \(x\ge2\)

\(\sqrt{3x-5}=3+\sqrt{x-2}\)

\(\Leftrightarrow\left(\sqrt{3x-5}\right)^2=\left(3+\sqrt{x-2}\right)^2\)

\(\Leftrightarrow3x-5=9+x-2+6\sqrt{x-2}\)

\(\Leftrightarrow x-6=3\sqrt{x-2}\)

\(\Leftrightarrow\left(x-6\right)^2=9\left(x-2\right)\)

\(\Leftrightarrow x^2-12x+36=9x-18\)

\(\Leftrightarrow x^2-21x+54=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-18\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=18\end{cases}}\) (TM)

Vậy..........................................................

b/ ĐKXĐ : \(x\ge\frac{2}{5}\)

\(\sqrt{25x^2-4}=2\sqrt{5x-2}\)

\(\Leftrightarrow25x^2-4=4\left(5x-2\right)\) (bình phương hai vế )

\(\Leftrightarrow25x^2-20x+4=0\)

\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow x=\frac{2}{5}\) (TM)

Vậy ................................................

10 tháng 7 2015

\(a,\sqrt{25x^2}=10\)

\(\sqrt{\left(5x\right)^2}=10\)

\(5x=10\)

\(x=2\)

 

1 tháng 4 2016

b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\)     ĐKXĐ: x>=1,x>=-1

<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

<=>x=+-4

7 tháng 4 2016

Đặt y=\(\sqrt{25x+4}\)=>25y+4=x^2

mà y^2=25x+4

giải hệ ra

7 tháng 4 2016

Đáp án -25/4

27 tháng 2 2022

a) ĐKXĐ : \(x\ge5\)

Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))

Khi đó phương trình thành a + b = 2

Lại có \(b^3+a^2=-2\)

=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)

a = 5 => x = 30 (tm) 

Vậy x = 30 là nghiệm phương trình 

27 tháng 2 2022

d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)

<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)

<=> |5x - 2| + |5x - 4| = 2

Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)

Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)

Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình 

7 tháng 4 2016

Đặty =\(\sqrt{25x+4}\)=>25y+4=x^2 (1)

Ta có  y^2=25x+4 (2)

Trừ  (2)-(1) =25(x-y)=(y-x)(y+x)

*Với x-y = 0 Thì ... 

*Với x+y+25=0 thì.... 

7 tháng 4 2016

Tổng nghịch đảo các nghiệm của phương trình đó là một số tự nhiên, số nguyên hay một hỗn số, nói chung là thuộc R. K phải chữ

26 tháng 8 2018

1,

\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)

\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)

\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)

\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)

\(=\frac{2\sqrt{h-1}}{h-2}\)

Thay \(h=3\)vào D ta có:

\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)

Vậy với \(h=3\)thì \(D=2\sqrt{2}\)

2,

a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)

Vậy PT có nghiệm là \(x=2\)

b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)

\(\Leftrightarrow0=-3\)(vô lí)

Vậy PT đã cho vô nghiệm.