Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
......................?
mik ko biết
mong bn thông cảm
nha ................
DK: \(x\ge1\)
\(PT\Leftrightarrow\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\\ \Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\\ \Leftrightarrow2-2\sqrt{x-1}=0\\ \Leftrightarrow1-\sqrt{x-1}=0\\\Leftrightarrow \sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(TM\right)\)
Vậy phương trình đã cho có 1 nghiệm là x = 2
a/ Điều kiện xác định : \(x\ge2\)
\(\sqrt{3x-5}=3+\sqrt{x-2}\)
\(\Leftrightarrow\left(\sqrt{3x-5}\right)^2=\left(3+\sqrt{x-2}\right)^2\)
\(\Leftrightarrow3x-5=9+x-2+6\sqrt{x-2}\)
\(\Leftrightarrow x-6=3\sqrt{x-2}\)
\(\Leftrightarrow\left(x-6\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow x^2-12x+36=9x-18\)
\(\Leftrightarrow x^2-21x+54=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-18\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=18\end{cases}}\) (TM)
Vậy..........................................................
b/ ĐKXĐ : \(x\ge\frac{2}{5}\)
\(\sqrt{25x^2-4}=2\sqrt{5x-2}\)
\(\Leftrightarrow25x^2-4=4\left(5x-2\right)\) (bình phương hai vế )
\(\Leftrightarrow25x^2-20x+4=0\)
\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow x=\frac{2}{5}\) (TM)
Vậy ................................................
\(a,\sqrt{25x^2}=10\)
\(\sqrt{\left(5x\right)^2}=10\)
\(5x=10\)
\(x=2\)
b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\) ĐKXĐ: x>=1,x>=-1
<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
<=>x=+-4
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
Đặty =\(\sqrt{25x+4}\)=>25y+4=x^2 (1)
Ta có y^2=25x+4 (2)
Trừ (2)-(1) =25(x-y)=(y-x)(y+x)
*Với x-y = 0 Thì ...
*Với x+y+25=0 thì....
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
ĐK:x>=-4/25
ta cộng cả 2 vế với 25x được 25x+4 +25can(25x+4)-x^2-25x=0
(25x+4+25can(25x+4)+625/4)-(x^2 +25x+625/4)=0
(can(25x+4)+25/2)^2-(x+25/2)^2=0
(x+can(25x+4)+25)(can(25x+4)-x)=0
+,Xét : x+can(25x+4)+25=0
can(25x+4)=-x-25 ĐK x<=25
bình phương là ra
+, Xét can(25x+4)-x=0
can(25x+4)=x
bình phương 2 vế là ra