Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{5}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{8}-\dfrac{1}{x}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{5}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{8}-\dfrac{1}{x}\\\dfrac{4}{x}+3\left(\dfrac{1}{8}-\dfrac{1}{y}\right)=\dfrac{5}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{8}-\dfrac{1}{x}\\\dfrac{4}{x}+\dfrac{3}{8}-\dfrac{3}{x}=\dfrac{5}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{8}-\dfrac{1}{x}\\\dfrac{1}{x}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{8}-\dfrac{1}{x}\\x=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\x=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=24\end{matrix}\right.\)
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{1}{x+1+\frac{1}{x}}+\frac{2}{x+2+\frac{1}{x}}=\frac{8}{15}\)
Đặt \(x+1+\frac{1}{x}=a\)
\(\frac{1}{a}+\frac{2}{a+1}=\frac{8}{15}\)
\(\Leftrightarrow a+1+2a=\frac{8}{15}a\left(a+1\right)\)
\(\Leftrightarrow8a^2-37a-15=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-\frac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1+\frac{1}{x}=5\\x+1+\frac{1}{x}=-\frac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+1=0\\x^2+\frac{11}{8}x+1=0\end{matrix}\right.\)
⇔ [( x + 2 )( x+12 )][( x + 3 )(x + 8)] = 4x²
⇔ ( x\(^2\) + 2x + 12x + 24 ) ( x\(^2\) + 3x + 8x + 24 ) = 4x²
Đặt x\(^2\) + 24 là a tacó :
pt⇔( a + 14x )( a + 11x ) = 4x\(^2\)
⇔ a\(^2\) + 11ax + 14ax + 154x\(^2\) - 4x\(^2\) = 0
⇔ a\(^2\) + 25ax + 150x\(^2\) = 0
⇔ a\(^2\) + 15ax + 10ax + 150x\(^2\) = 0
⇔ a( a + 15x ) + 10x ( a + 15x ) = 0
⇔ ( a + 10x ) ( a + 15x ) = 0
Thay a bằng x\(^2\) + 24
pt⇔ ( x\(^2\) + 24 + 10x ) ( x\(^2\) + 24 + 15x ) = 0
⇔ ( x\(^2\) + 4x + 6x + 24 ) ( x\(^2\) + 15x + 24 ) = 0
⇔ [ x( x + 4 ) + 6 (x + 4 )] ( np in dam) = 0
⇔ [ ( x + 6 ) ( x + 4 ) ] ( cnt ) = 0
⇔ \(\left[{}\begin{matrix}x+6=0\\x+4=0\\x^2+15x+24=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-4\\x\approx-1,82\\x\approx-13,18\end{matrix}\right.\)
|x-8|+|x+8|= x^2 - 16
= ( x-8)+ ( x+ 8) = x^2 - 16
=> 2x = x^2 - 16
=> đến đây bn tự giải nhé
DK:....
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
Dat \(\sqrt{1+x}+\sqrt{8-x}=p\)
\(\Leftrightarrow p^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow\frac{p^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)
Ta co bien doi :
\(pt\Leftrightarrow p+\frac{p^2-9}{2}=3\)
\(\Leftrightarrow\frac{p^2+2p-9}{2}=3\)
\(\Leftrightarrow p^2+2p-15=0\)
\(\Leftrightarrow\left(p+5\right)\left(p-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}p=-5\\p=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}+\sqrt{8-x}=-5\left(loai\right)\\\sqrt{1+x}+\sqrt{8-x}=3\left(chon\right)\end{matrix}\right.\)
\(\Leftrightarrow1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)( thoa )
Vay...