Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Câu hỏi của Hà thúy anh - Toán lớp 8 | Học trực tuyến Vừa có ng giải xong
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
\(16x^4+32x^3+24x^2+8x-15=0\\ \Leftrightarrow\left(16x^4-8x^3\right)+\left(40x^3-20x^2\right)+\left(44x^2-22x\right)+\left(30x-15\right)=0\\ \Leftrightarrow8x^3\left(2x-1\right)+20x^2\left(2x-1\right)+22x\left(2x-1\right)+15\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(8x^3+20x^2+22x+15\right)=0\\ \Leftrightarrow\left(2x-1\right)\left[\left(8x^3+12x^2\right)+\left(8x^2+12x\right)+\left(10x+15\right)\right]=0\\ \Leftrightarrow\left(2x-1\right)\left[4x^2\left(2x+3\right)+4x\left(2x+3\right)+5\left(2x+3\right)\right]\\ \Leftrightarrow\left(2x-1\right)\left(2x+3\right)\left(4x^2+4x+5\right)=0\)
Mà: \(4x^2+4x+5=\left(4x^2+4x+1\right)+4=\left(2x+1\right)^2+4>0\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)