Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai
ĐK : \(X\ne-1;-3;-7;-9\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)
\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(2\left(x+1\right)\left(x+9\right)=40\)
\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)
\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)
\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn )
Vậy ...............
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>2=2(luôn đúng)
a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)
\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)
=>-216x=216
hay x=-1
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)
<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)
<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)
<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)
<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)
<=>\(2x-2-2x+14=-x^2+8x-7\)
<=>\(x^2-8x+19=0\)
<=>(x-4)2+3=0(vô lí)
Vậy PT vô nghiệm
ĐKXĐ:\(x\ne\pm\dfrac{1}{2}\)
\(\dfrac{1+8x}{4+8x}-\dfrac{4x}{12x-6}+\dfrac{32x^2}{3\left(4-16x^2\right)}=0\)
\(\Leftrightarrow\dfrac{1+8x}{4\left(2x+1\right)}-\dfrac{4x}{6\left(2x-1\right)}+\dfrac{32x^2}{-6\cdot\left(2x-1\right)\left(2x+1\right)}=0\)
\(\Leftrightarrow\dfrac{6\cdot\left(1+8x\right)\left(2x-1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{4\cdot4x\left(2x+1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{32x^2\cdot4}{24\left(2x-1\right)\left(2x+1\right)}=0\)
\(\Leftrightarrow96x^2-36x-6-36x^2-16x-144x^2=0\)
\(\Leftrightarrow-84x^2-52x-6=0\)
\(\Leftrightarrow\Delta=688\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{52-\sqrt{688}}{-168}=\dfrac{-13+\sqrt{43}}{42}\\x_2=\dfrac{52+\sqrt{688}}{-168}=\dfrac{-13-\sqrt{43}}{43}\end{matrix}\right.\)
Vậy pt có 2 nghiệm phân biệt............