Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(0\le x\le5\).
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).
PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).
+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).
+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).
Vậy...
ĐK: \(0\le x\le5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH2: \(ab+2a+2b=8\)
\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)
\(\sqrt{5-x}+\sqrt{x}=3\)
\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy ...
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x< -5\end{matrix}\right.\)
- Với \(x\ge5\)
\(\Leftrightarrow\sqrt{x-5}\left(\frac{2x-1}{\sqrt{x+5}}-3\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\2x-1=3\left(x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-16\left(l\right)\end{matrix}\right.\)
- Với \(x< -5\)
\(\Leftrightarrow\sqrt{5-x}\left(\frac{2x-1}{\sqrt{-x-5}}-3\sqrt{-x-5}\right)=0\)
\(\Leftrightarrow2x-1=3\left(-x-5\right)\)
\(\Leftrightarrow5x=-14\Rightarrow x=-\frac{14}{5}>-5\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=5\)
b/ Với \(x< 1\) pt vô nghiệm
Với \(x\ge1\)
\(\Leftrightarrow\left(3x-1\right)\left(3x^2-4x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(3x-1\right)^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(3x-1\right)^2-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow9x^2-7x+2=0\) (vô nghiệm)
Vậy pt có nghiệm duy nhất \(x=1\)
a:
ĐKXĐ: x>=5/2
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
=>\(2\sqrt{2x-5}+4=14\)
=>\(\sqrt{2x-5}=5\)
=>2x-5=25
=>2x=30
=>x=15
b: \(x^2-4x=\sqrt{x+2}\)
=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0
=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0
=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0
=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Lời giải:
a) ĐK: $x\geq 0$
BPT $\Leftrightarrow \sqrt{x+2}(\sqrt{2}-1)\leq \sqrt{x}$
$\Leftrightarrow (3-2\sqrt{2})(x+2)\leq x$
$\Leftrightarrow x(2-2\sqrt{2})\leq 2(2\sqrt{2}-3)$
$\Leftrightarrow x\geq \frac{2(2\sqrt{2}-3)}{2-2\sqrt{2}}=-1+\sqrt{2}$
Vậy BPT có nghiệm $x\geq -1+\sqrt{2}$
b) ĐK: $x\geq 2$ hoặc $x\leq -2$
BPT $\Leftrightarrow (x-5)\sqrt{x^2-4}-(x-5)(x+5)\leq 0$
$\Leftrightarrow (x-5)[\sqrt{x^2-4}-(x+5)]\leq 0$Ta có 2 TH:
TH1:
\(\left\{\begin{matrix} x-5\geq 0\\ \sqrt{x^2-4}-(x+5)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ \sqrt{x^2-4}\leq x+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ x^2-4\leq x^2+10x+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ 29\leq 10x\end{matrix}\right.\Leftrightarrow x\geq 5\)
TH2:
\(\left\{\begin{matrix} x-5\leq 0\\ \sqrt{x^2-4}-(x+5)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 5\\ x^2-4\geq x^2+10x+25 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ -29\geq 10x\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ x\leq \frac{-29}{10}\end{matrix}\right.\Leftrightarrow x\leq \frac{-29}{10}\)
Kết hợp đkxđ suy ra $x\geq 5$ hoặc $x\leq \frac{-29}{10}$
ở VP "+4" nằm ở ngoài căn,đau bụng nên viết vội còn chạy ra WC :P