Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
M+N=(3/2x6-7x+4x^5+2,5x^2)+(-3x^6+1/2^5-13/2x^2+4x)
M+N=3/2x6-7x+4x^5+2,5x^2+-3x^6+1/2^5-13/2x^2+4x
= (3/2x^6-3x^6)+(7x+4x)+(4x^5+1/2^5)+(2,5x^2-13/2x^2)
=-1,5x^6+11x+4,5x^5-4x^2
M-N=(3/2^6-7x+4x^5+2,5x^2)-(-3x^6+1/2^5-13/2x^2+4x)
=3/2^6-7x+4x^5+2,5x^2+3x^6-1/2^5+13/2x^2-4x
= (3/2x^6+3x^6)+(-7x-4x)+(4x^5-1/2^5)+(2,5x^2+13/2x^2)
= 4,5x^6-11x+3,5x^5+9x^2
N-M=(-3x^6+1/2^5-13/2x^2+4x)-(3/2^6-7x+4x^5+2,5x^2)
= -3x^6+1/2^5-13/2x^2+4x-3/2^6-7x-4x^5-2,5x^2
= (-3x^6-3/2x^6)+(1/2x^5-4x^5)+(-13/2x^2-2,5x^2)+(4x-7x)
= -4,5x^6-3,5x^5-9x^2-3x
Cho đa thức
P(x)= x mũ 2 + 2x mũ 2 +1 (1)
Thay P(-1) vào đa thức (1) , ta có :
P= \((-1)^2 +2.(-1) ^3\)
P= \(1+ (-2)\)
P= \(-1\)
Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :
\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)
\(P= \dfrac{1}{4} + \dfrac{1}{4}\)
\(P=\dfrac{1}{2}\)
Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)
Thay Q(-2) vào đa thức (2) , ta có :
Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)
\(Q = 16-32+8+8+1\)
\(Q= 1\)
Thay Q(1) vào đa thức (2) , ta có:
\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)
\(Q= 1+ 4+2-4+1\)
\(Q= 4\)
Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
Bài giải
a, \(\frac{2}{7}x+\frac{1}{2}=-\frac{3}{4}\)
\(\frac{2}{7}x=-\frac{3}{4}-\frac{1}{2}\)
\(\frac{2}{7}x=-\frac{5}{4}\)
\(x=-\frac{5}{4}\text{ : }\frac{2}{7}\)
\(x=-\frac{35}{8}\)
b, \(\left(6x+\frac{2}{5}\right)=-\frac{8}{125}\)
\(6x=-\frac{8}{125}-\frac{2}{5}\)
\(6x=-\frac{58}{125}\)
\(x=-\frac{58}{125}\text{ : }6\)
\(x=\frac{-29}{375}\)
c, \(\left|x-\frac{2}{3}\right|\cdot\left(18-6x^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-\frac{2}{3}\right|=0\\18-6x^2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\6x^2=18\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x^2=3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\sqrt{3}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{\frac{2}{3}\text{ ; }\sqrt{3}\right\}\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)
c) Đề hơi sai roi bạn oi
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)
\(\left(\dfrac{1}{2}\right)^{x+2}=16^{4-2x}\)
=>\(2^{-x-2}=2^{4\left(4-2x\right)}\)
=>-x-2=4*(4-2x)
=>-x-2=16-8x
=>-x+8x=16+2
=>7x=18
=>\(x=\dfrac{18}{7}\)