\(10x^2\)\(+3x+1=\left(6x+1\right)\sqrt{x^2+3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

\(10x^2+3x+1=\left(6x+1\right)\sqrt{x^2+3}\)

Đặt \(\sqrt{x^2+3}=t\left(t\ge\sqrt{3}\right)\)

\(pt\Leftrightarrow10x^2+3x+1-\left(6x+1\right)t=0\)

\(\Leftrightarrow t^2-\left(6x+1\right)t+10x^2+3x+1-x^2-3=0\)

\(\Leftrightarrow t^2-\left(6x+1\right)t+9x^2+3x-2=0\)

\(\Delta=\left(6x+1\right)^2-4\left(9x^2+3x-2\right)=36x^2+12x+1-36x^2-12x+8=9\)

\(\Rightarrow\sqrt{\Delta}=3\)

Dùng công thức nghiệm mà giải,số đẹp r đó

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

Y
25 tháng 7 2019

1. \(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|=1\)

+ Ta có : \(\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)

Dấu "=" \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

\(\Leftrightarrow2\le\sqrt{x}\le3\Leftrightarrow4\le x\le9\)

2. + \(ĐK:4-2x-x^2\ge0\)

+ VT = \(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\) \(\ge\sqrt{4}+\sqrt{9}=5\) (1)

Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

+ VP \(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\forall x\) (2)

Dấu "=" \(\Leftrightarrow x=-1\)

+ Từ (1) và (2) suy ra : pt \(\Leftrightarrow VT=VP=5\Leftrightarrow x=-1\) (TM)

3. + TH1: \(x< 0\) ta có :

\(VT< \sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )

+ TH2 : x = 0 ta có :

\(VT=\sqrt[3]{1}+\sqrt[3]{0}=1\) ( TM )

+ TH3 : x > 0 ta có :

\(VT>\sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )

Vậy x = 0 là nghiệm duy nhất của pt

4. \(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+3\right)-24=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x-8\right)-24=0\)

\(\Leftrightarrow t\left(t-5\right)-24=0\) ( với \(t=x^2+2x-3\) )

\(\Leftrightarrow t^2-5t-24=0\Leftrightarrow\left(t+3\right)\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=-3\\x^2+2x-3=8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=2\sqrt{3}-1\\x=-2\sqrt{3}-1\end{matrix}\right.\) ( TM )

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........