K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

\(10\sqrt{x^3+1}=3\left(x^2+2\right)\) \(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=\frac{3}{10}\left(x^2+2\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=\frac{3}{10}x^2+\frac{3}{5}\)\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=\frac{3}{10}\left(x+1\right)+\frac{3}{10}\left(x^2-x+1\right)\)

Chia 2 vế cho x2 -x + 1, ta được:

\(\Leftrightarrow\sqrt{\frac{x+1}{x^2-x+1}}=\frac{3}{10}.\frac{x+1}{x^2-x+1}+\frac{3}{10}\)

Đặt a = \(\sqrt{\frac{x+1}{x^2-x+1}}\left(a\ge0\right)\), ta được pt: \(a=\frac{3}{10}.a^2+\frac{3}{10}\Leftrightarrow\frac{3}{10}a^2-a+\frac{3}{10}=0\)

  Giải denta ra ta được a = 1/3(nhận) hoặc a = 3(nhận)

+) Với a = 1/3 , pt trở thành: \(\sqrt{\frac{x+1}{x^2-x+1}}=\frac{1}{3}\Leftrightarrow\frac{x+1}{x^2-x+1}=\frac{1}{9}\). Tới đây bạn tự giải

+) Với a = 3 , pt trở thành: \(\sqrt{\frac{x+1}{x^2-x+1}}=3\Leftrightarrow\frac{x+1}{x^2-x+1}=9\). Tới đây bạn tự giải

27 tháng 5 2016

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

đặt \(\sqrt{x+1}=a\) đk a>=0 \(\sqrt{x^2-x+1}=b\) đk b>=0

ptđã cho <=>\(10ab=3\left(a^2+b^2\right)\) <=>\(\left(3a-b\right)\left(3b-a\right)=0\) 

...

1 tháng 11 2016

Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{x-3}=b\end{cases}}\)

=> a2 + b2 = 2

PT \(\Leftrightarrow\frac{a^3+b^3}{a+b}=2\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=2\)

\(\Leftrightarrow2-ab=2\Leftrightarrow ab=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{5-x}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

17 tháng 8 2016
Cmt rồi nha
17 tháng 8 2016

bài này ai kamf chua 

13 tháng 2 2016

-Đặt ĐK: x>-1;

-Đặt a=\(\sqrt{x+1}\);b=\(\sqrt{x^2-x+1}\); Ta được: 5ab=2(a2+b2)

-Phân tích thành nhân tử được :(a-2b)(2a-b)=0

Đến đây bạn giải tiếp đi   :)

13 tháng 2 2016

Mình không hiểu chỗ này: ta được: 5ab = 2( \(a^2+b^2\))

25 tháng 7 2016

Tìm nhẩm nghiệm rồi nhân liên hợp

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

2 tháng 2 2021

Xem lại đề bạn nhé

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v