Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{100\left(x+20\right)}{x\left(x+20\right)}-\frac{100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\frac{2000}{x\left(x+20\right)}=\frac{1}{3}\)
\(\Rightarrow x^2+20x=3.2000\)
\(\Rightarrow x^2+20x-6000=0\)
ĐKXĐ: \(x\ne0;x\ne-2\)
Ta có: \(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\Leftrightarrow\frac{2000}{x^2+20x}=\frac{1}{3}\)
\(\Leftrightarrow x^2+20x=6000\)
\(\Leftrightarrow x^2+2.10x+100=6100\)
\(\Leftrightarrow\left(x+10\right)^2=6100\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\sqrt{61}-10\left(TM\right)\\x=-10\sqrt{61}-10\left(TM\right)\end{cases}}\)
Vậy...
=) đây là bài giải bằng cách lập pt mà nãy bạn đã đăng nè:v mà giải thì ra vô nghiệm á bạn nên mik ko có làm:v
sẵn thì sửa lun:v
Theo đề bài ta có pt:
\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{12}\) mới đúng á
\(|x-99|^{100}+|x-100|^{101}=1\)
* Nếu \(x=99\)\(\Rightarrow\) \(|99-99|^{100}+|99-100|^{101}=0+1=1\)( đúng )
\(\Rightarrow x=99\)là một nghiệm của phương trình
* Nếu \(x=100\)\(\Rightarrow|100-99|^{100}+|100-100|^{101}=1+0=1\)( đúng )
\(\Rightarrow x=100\)là một nghiệm của phương trình
* Nếu \(x< 99\)\(\Rightarrow x-100< 99-100\)\(\Rightarrow x-100< -1\)
\(\Rightarrow|x-100|^{101}>1\)\(\Leftrightarrow|x-99|^{100}+|x-100|^{101}>1\)\(\Rightarrow\)Phương trình vô nghiệm
* Nếu \(x>100\)\(\Rightarrow x-99>100-99\)\(\Rightarrow x-99>1\)
\(\Rightarrow|x-99|^{100}>1\)\(\Rightarrow|x-99|^{100}+|x-100|^{101}>1\)\(\Rightarrow\)Phương trình vô nghiệm
* Nếu \(99< x< 100\)\(\Rightarrow99-99< x-99< 100-99\)\(\Rightarrow0< x-99< 1\)
\(\Rightarrow|x-99|=x-99\)\(\left(1\right)\)
Cũng có : \(99< x< 100\)\(\Rightarrow99-100< x-100< 100-100\)\(\Rightarrow-1< x-100< 0\)
\(\Rightarrow|x-100|=-x+100\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow|x-99|+|x-100|=x-99-x+100\)
\(\Rightarrow|x-99|+|x-100|=1\)
Ta lại có : \(|x-99|^{100}< |x-99|\)Do( \(0< |x-99|< 1\))
\(|x-100|^{101}< |x-100|\)Do ( \(0< |x-100|< 1\)
\(\Rightarrow|x-99|^{100}+|x-100|^{101}< |x-99|+|x-100|\)
\(\Rightarrow|x-99|^{100}+|x-100|^{101}< 1\)
\(\Leftrightarrow\)Phương trình vô nghiệm
Vậy phương trình có hai nghiệm duy nhất là \(x\in\left\{99;100\right\}\)
Bạn ơi bạn chia trường hợp kiểu gì vậy , với cả trường hợp cuối mình không hiểu gì đâu bạn ơi