Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(2x-1\right)^2}=3\)
⇔ \(\left|2x-1\right|=3\)
⇔ \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
ĐKXĐ : \(x\ge0\)
⇔ \(3\sqrt{x}-2\sqrt{3^2x}+\sqrt{4^2x}=5\)
⇔ \(3\sqrt{x}-2\cdot3\sqrt{x}+4\sqrt{x}=5\)
⇔ \(7\sqrt{x}-6\sqrt{x}=5\)
⇔ \(\sqrt{x}=5\)
⇔ \(x=25\)( tm )
c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)
ĐKXĐ : \(x\ge-5\)
⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)
⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot3\sqrt{x+5}=6\)
⇔ \(-\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)
⇔ \(\frac{5}{4}\sqrt{x+5}=6\)
⇔ \(\sqrt{x+5}=\frac{24}{5}\)
⇔ \(x+5=\frac{576}{25}\)
⇔ \(x=\frac{451}{25}\left(tm\right)\)
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
ĐK : x ≥ 0
⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)
⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)
⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)
⇔ \(-3\sqrt{x}=-5\)
⇔ \(\sqrt{x}=15\)
⇔ \(x=225\)( tm )
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
ĐK : x ≤ 3
⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)
⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)
⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)
⇔ \(3\sqrt{3-x}=6\)
⇔ \(\sqrt{3-x}=2\)
⇔ \(3-x=4\)
⇔ \(x=-1\)( tm )
c) \(\sqrt{9x^2+12x+4}=4\)
⇔ \(\sqrt{\left(3x+2\right)^2}=4\)
⇔ \(\left|3x+2\right|=4\)
⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
ĐK : x ≥ 1
⇔ \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\sqrt{x-1}=1\)
⇔ \(x-1=1\)
⇔ \(x=2\)( tm )
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
ĐKXĐ: bạn tự tìm
a/ Có vẻ bạn ghi nhầm đề, nhưng nói chung vẫn giải được, nghiệm xấu
\(\Leftrightarrow2\sqrt{x}+\frac{1}{2}\sqrt{x}-\frac{3}{4}\sqrt{5x}=5\)
\(\Leftrightarrow\sqrt{x}\left(\frac{5}{2}-\frac{3\sqrt{5}}{4}\right)=5\)
\(\Rightarrow\sqrt{x}=\frac{40+12\sqrt{5}}{11}\Rightarrow x=\left(\frac{40+12\sqrt{5}}{11}\right)^2\)
b/ \(\sqrt{3-x}-3\sqrt{3-x}+5\sqrt{3-x}=6\)
\(\Leftrightarrow3\sqrt{3-x}=6\)
\(\Leftrightarrow\sqrt{3-x}=2\Rightarrow3-x=4\Rightarrow x=-1\)
c/ \(7\left(5\sqrt{x}-2\right)=2\left(8\sqrt{x}+\frac{5}{2}\right)\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow19\sqrt{x}=19\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
d/ \(\sqrt{3x^2+12x+4}=4\)
\(\Leftrightarrow3x^2+12x+4=16\)
\(\Leftrightarrow3x^2+12x-12=0\)
\(\Rightarrow x=-2\pm2\sqrt{2}\)
Bạn tự tìm ĐKXĐ.
a/ \(\sqrt{4-5x}=12\Rightarrow4-5x=144\Rightarrow x=-28\)
b/ \(10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
\(\Rightarrow\sqrt{3x}=4\sqrt{6}\Rightarrow\sqrt{x}=4\sqrt{2}\)
\(\Rightarrow x=32\)
c/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
d/ \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
e/ \(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow\frac{4x+3}{x+1}=9\)
\(\Rightarrow4x+3=9x+9\Rightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)
f/ \(\sqrt{x-2}\le3\Rightarrow x-2\le9\Rightarrow2\le x\le11\)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
1/ \(\Leftrightarrow\left|2x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow6\sqrt{x+2}-2\sqrt{x+2}=9\sqrt{x+2}-10\)
\(\Leftrightarrow5\sqrt{x+2}=10\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x=2\)