K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

1. ĐKXĐ: \(x\ge3\)

\(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)

\(6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(4\sqrt{x-3}=20\)

\(\sqrt{x-3}=5\)

\(x-3=25\)

\(x=28\left(TMĐKXĐ\right)\)

Vậy....

23 tháng 10 2020

2. ĐKXĐ: \(x\ge0\)

\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-7=\frac{1}{2}\sqrt{5x}\)

\(\frac{3}{2}\sqrt{5x}+\sqrt{5x}-\frac{1}{2}\sqrt{5x}=7\)

\(2\sqrt{5x}=7\)

\(\sqrt{5x}=\frac{7}{2}\)

\(5x=\frac{49}{4}\)

\(x=\frac{49}{20}\left(TMĐKXĐ\right)\)

Vậy...

16 tháng 7 2019

đề =

 \(2\sqrt{9\left(x-3\right)}-\frac{1}{5}\sqrt{25\left(x-3\right)}-\frac{1}{7}\sqrt{49\left(x-3\right)}=20\)

=>\(6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

=>\(4\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=5\)

=>\(x-3=25\)

=>\(x=28\)

20 tháng 8 2019

\(2\sqrt{9x-27}-\frac{1}{5}\sqrt{25x-75}-\frac{1}{7}\sqrt{49x-147}=20\)

\(< =>2\sqrt{9\left(x-3\right)}-\frac{1}{5}\sqrt{25\left(x-3\right)}-\frac{1}{7}\sqrt{49\left(x-3\right)}=20\)

\(< =>2\cdot3\sqrt{\left(x-3\right)}-\frac{1}{5}.5\sqrt{\left(x-3\right)}-\frac{1}{7}.7\sqrt{\left(x-3\right)}=20\) \(đk:x\ge0\)

\(< =>6\sqrt{\left(x-3\right)}-\sqrt{\left(x-3\right)}-\sqrt{\left(x-3\right)}=20\)

\(< =>\sqrt{\left(x-3\right)}\left(6-1-1\right)=20\)

\(< =>4\sqrt{\left(x-3\right)}=20\)

\(< =>\sqrt{\left(x-3\right)}=5\)

\(< =>x-3=25\)

\(< =>x=28\left(tm\right)\)

Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\cdot\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

28 tháng 8 2023

\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)

\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)

Vậy \(S=\left\{28\right\}\)

loading...  loading...  

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$

PT $\Leftrightarrow 5x-2=7^2=49$

$\Leftrightarrow 5x=51$

$\Leftrightarrow x=\frac{51}{5}=10,2$

b. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$

$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$

$\Leftrightarrow 8\sqrt{x-3}=24$

$\Leftrightarrow \sqrt{x-3}=3$

$\Leftrightarrow x-3=9$

$\Leftrightarrow x=12$ (tm)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bài 1:

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$

$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$

$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$

$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$

Nếu $x-3=0$

$\Leftrightarrow x=3$ (tm) 

Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$

$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)

$\Leftrightarrow a^3+a^2-2=0$

$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$

$\Leftrightarrow (a-1)(a^2+2a+2)=0$

Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$

$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)

Vậy pt có nghiệm duy nhất $x=3$.

a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

<=>\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=>\(\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+\frac{6}{2}\right)=-17\)

<=>\(\sqrt{x-1}=-17\)

<=>x-1=17

<=>x=18

Vậy pt có nghiệm là x=18

2 tháng 7 2019

\(a.ĐK:x-1\ge0\Leftrightarrow x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{27}{2}\sqrt{x-1}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{27}{2}+24\sqrt{\frac{1}{64}}\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}.\left(-10\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\frac{-17}{-10}=\frac{17}{10}\)

\(\Leftrightarrow x-1=\left(\frac{17}{10}\right)^2\)

\(\Leftrightarrow x=\frac{289}{100}+1=3,89\left(TM\right)\)

Vậy \(S=\left\{3,89\right\}\)

\(b.ĐK:x^2+2\ge0\)

\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow9\sqrt{x^2+2}+2\sqrt{x^2+2}-25\sqrt{x^2+2}=-3\)

\(\Leftrightarrow\sqrt{x^2+2}\left(9+2-25\right)=-3\)

\(\Leftrightarrow\sqrt{x^2+2}=\frac{-3}{-14}=\frac{3}{14}\)

\(\Leftrightarrow x^2+2=\left(\frac{3}{14}\right)^2\)

\(\Leftrightarrow x=\sqrt{\frac{9}{196}-2}=\sqrt{-\frac{383}{196}}\left(vl\right)\)

Vậy \(S=\varnothing\)

Mấy câu kia làm tương tự

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...