Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Do d đi qua A nên phương trình d có dạng:
\(a\left(x-2\right)+b\left(y-5\right)=0\Leftrightarrow ax+by-2a-5b=0\) (1) với \(a^2+b^2>0\)
Áp dụng công thức khoảng cách:
\(d\left(I;d\right)=\dfrac{\left|a.4+b.1-2a-5b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|2a-4b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow\left|a-2b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2-4ab+4b^2=a^2+b^2\)
\(\Leftrightarrow3b\left(3b-4a\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\b=\dfrac{4a}{3}\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow\left[{}\begin{matrix}ax+0.y-2a-5.0=0\\ax+\dfrac{4a}{3}.y-2a-5.\dfrac{4a}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4y-26=0\end{matrix}\right.\)
Bài 2:
Bài này có nhiều cách làm, (ví dụ viết phương trình đường thẳng d, tính khoảng cách tới A và B rồi cho chúng bằng nhau, từ đó suy ra tương tự câu a), hoặc đơn giản hơn là lý luận như sau:
Đường thẳng d cách đều 2 điểm AB khi nó thỏa mãn 1 trong 2 trường hợp sau:
TH1: d song song AB
Ta có \(\overrightarrow{AB}=\left(-2;8\right)=2\left(-1;4\right)\Rightarrow d\) nhận (4;1) là 1 vtpt (do d song song AB)
Phương trình d có dạng:
\(4\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow4x+y+5=0\)
TH2: d đi qua trung điểm của AB
Gọi M là trung điểm AB, theo công thức trung điểm ta có \(M\left(4;3\right)\Rightarrow\overrightarrow{IM}=\left(6;0\right)=6\left(1;0\right)\)
\(\Rightarrow\) Đường thẳng d (hay IM) nhận (0;1) là 1 vtpt
Phương trình: \(0\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow y-3=0\)
Pt đã cho có nghiệm duy nhất khi và chỉ khi:
\(m^2-4\ne0\Rightarrow m\ne\pm2\)
\(\Rightarrow\) Có \(5-\left(-5\right)+1-2=9\) giá trị nguyên của m
Đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1+4t\\y=2-3t\end{matrix}\right.\) đi qua điểm \(A\left(1;2\right)\) và có VTCP \(\overrightarrow{u}=\left(4;-3\right)\)
\(\Rightarrow\overrightarrow{n}=\left(3;4\right)\) là VTPT của đường thẳng
\(\Rightarrow\) PT tổng quát: \(3\left(x-1\right)+4\left(y-2\right)=0\Leftrightarrow3x+4y-11=0\)
\(\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|3.1+4.\left(-1\right)-11\right|}{\sqrt{3^2+4^2}}=\dfrac{12}{5}\)
ĐKXĐ: \(-1\le x\le4\)
\(\Leftrightarrow\left(x-3\right)\sqrt{1+x}-\left(x-3\right)+x-x\sqrt{4-x}=2x^2-6x\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{1+x}-1\right)+x\left(1-\sqrt{4-x}\right)=2x^2-6x\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)}{\sqrt{1+x}+1}+\dfrac{x\left(x-3\right)}{1+\sqrt{4-x}}=2\left(x^2-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\Rightarrow x=...\\\dfrac{1}{\sqrt{1+x}+1}+\dfrac{1}{1+\sqrt{4-x}}=2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(VT< \dfrac{1}{1}+\dfrac{1}{1}=2\Rightarrow VT< VP\Rightarrow\left(1\right)\) vô nghiệm
Vậy ...
1.
Nếu BC là đáy lớn \(\Rightarrow S_{MBC}=S_{MAB}+S_{ABCD}\Rightarrow S_{MBC}>S_{ABCD}\) (không thỏa mãn)
\(\Rightarrow BC\) là đáy nhỏ \(\Rightarrow S_{MAD}=S_{MBC}+S_{ABCD}=S_{MBC}+3S_{MBC}=4S_{MBC}\)
Từ M kẻ đường thẳng vuông góc AD và BC, lần lượt cắt BC tại H và AD tại K
\(\Rightarrow S_{MAD}=\dfrac{1}{2}MK.AD\) ; \(S_{MBC}=\dfrac{1}{2}MH.BC\)
\(\Rightarrow MK.AD=4MH.BC\Rightarrow\dfrac{AD}{BC}=4.\dfrac{MH}{KM}=4.\dfrac{AM}{BM}=4.\dfrac{BC}{AD}\) (theo Talet)
\(\Rightarrow AD^2=4BC^2\Rightarrow AD=2BC\Rightarrow\overrightarrow{AD}=2\overrightarrow{BC}\)
Ta có: \(\overrightarrow{BC}=\left(7;-1\right)\) ; \(\overrightarrow{AD}=\left(x_0+2;y_0+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_0+2=14\\y_0+2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=12\\y_0=-4\end{matrix}\right.\) \(\Rightarrow x_0-y_0=16\)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
Ta có: \(x^2-6x+m-2=0\)
\(\Rightarrow\Delta=6^2-4\left(m-2\right)\)
Để phương tình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow36-4m+8>0\Leftrightarrow44>4m\Leftrightarrow11>m\)
Câu D
b) \(\dfrac{3\pi}{2}< \alpha< 2\pi\)\(\Rightarrow cos\alpha>0;sin\alpha< 0\)
Có \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)\(\Rightarrow cos\alpha=\dfrac{4}{5}\)
\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{3}{5}\)
\(sin\left(\alpha-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sin\alpha-cos\alpha\right)=\dfrac{\sqrt{2}}{2}\left(-\dfrac{3}{5}-\dfrac{4}{5}\right)=-\dfrac{7\sqrt{2}}{10}\)
Bài 2:
a) Gọi đt d vuông góc với đường thẳng \(\Delta\)có dạng: \(d:-4x+3y+c=0\)
\(A\in\left(d\right)\Rightarrow-4+3+c=0\Leftrightarrow c=1\)
Vậy \(d:-4x+3y+1=0\)
b) Gọi pt đường tròn (C) tâm A có dạng \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=R^2\)
Vì (C) tiếp xúc với \(\Delta\)
\(\Rightarrow\)\(R=d_{\left(A;\Delta\right)}=\dfrac{\left|3+4+5\right|}{\sqrt{3^2+4^2}}=\dfrac{12}{5}\)
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=\dfrac{144}{25}\)
Vậy...