Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
B2:Áp dụng cô si ta có:\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\left(1\right)\)
Từ \(\left(1\right)\)suy ra BĐT tương đương với \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\ge\frac{17}{2}\)
Ta có \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+b\right)^2-2ab+\frac{\left(a+b\right)^2-2ab}{a^2b^2}\)Mà \(ab\le\frac{1}{4}\)
Nên \(\hept{\begin{cases}\left(a+b\right)^2-2ab=1-2.\frac{1}{4}=\frac{1}{2}\left(2\right)\\\frac{\left(a+b\right)^2-2ab}{a^2b^2}\ge\frac{\frac{1}{2}}{\frac{1}{16}}=8\left(3\right)\end{cases}}\)
Cộng \(\left(2\right)vs\left(3\right)\)lại ta thu được \(đpcm\)
Dấu \(=\)xảy ra khi \(a=b=\frac{1}{2}\)
Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).
Do đó đặt \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:
Cho \(y^2+5x=24\), tìm max:
\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)
\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)
\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)
Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)
Và dễ dàng chứng minh \(ab+bc+ca\le3\)
Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).
Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)
Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.
Khi đó P = 3. Vậy...
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)\ge\left(ab+a+1\right)^2\)
Mà \(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)=\left(a+b+c\right)\left(a+a^2b+ab\right)\)
\(\Rightarrow\frac{a}{\left(ab+a+1\right)^2}\ge\frac{a}{\left(a+b+c\right)\left(a+a^2b+ab\right)}=\frac{1}{\left(a+b+c\right)\left(1+ab+b\right)}\)
Tương tự rồi cộng theo vế 3 BĐT ta có:
\(VT\ge\frac{1}{a+b+c}\left(Σ\frac{1}{1+ab+b}\right)=\frac{1}{a+b+c}\left(abc=1\right)\)
Đẳng thức xảy ra khi \(a=b=c=1\)
1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)
Mà \(ab+bc+ca=3\). Do đó \(ab\ge1\)
Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)
Và \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)
\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)
và \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
Nên \(a+b+c\ge3\ge3abc\)
Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được
\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Do đó ta được
\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự ta được
\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)
Cộng theo vế các BĐT trên ta được
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM
ĐẲng thức xảy ra khi và chỉ khi a = b = c >0
Ta có: \(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng cộng mẫu
Ta có: \(\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)\)
\(=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left[\frac{abc}{ab\left(1+c\right)}+\frac{1}{a+1}\right]=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{a+1}\right)\) (1)
CMT2 được: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\) (2)
\(\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\) (3)
Cộng (1);(2) và (3) vế theo vế
Ta được: \(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\le\frac{1}{4}\left[\left(\frac{c}{c+1}+\frac{1}{c+1}\right)+\left(\frac{a}{a+1}+\frac{1}{a+1}\right)+\left(\frac{b}{b+1}+\frac{1}{b+1}\right)\right]\)
\(=\frac{1}{4}.\left(1+1+1\right)=\frac{3}{4}\)
=> đpcm
Nhân 2 vế của giả thiết với \(abc\) ta có: \(ab+bc+ca=abc\)
Ta có: \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^2}{b+ca}+\frac{b+c}{8}+\frac{b+a}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{c+a}{8}+\frac{c+b}{8}\ge\frac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{4a+4b+4c}{8}\ge\frac{3a+3b+3c}{4}\)
\(\Leftrightarrow VT+\frac{2a+2b+2c}{4}\ge\frac{3a+3b+3c}{4}\Leftrightarrow VT\ge VP\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Rightarrow ab+bc+ca=abc\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
\(VT=\frac{a^3}{a^2+ab+bc+ca}+\frac{b^3}{b^2+ab+bc+ca}+\frac{c^3}{c^2+ab+bc+ca}\)
\(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\\\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\\\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+c}{8}+\frac{b+c}{8}\ge3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\end{cases}}\)
\(\Rightarrow\)\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}+\frac{a+b+c}{2}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(a+b\right)}+\frac{c^3}{\left(a+c\right)\left(b+c\right)}\ge\frac{a+b+c}{4}\)
\(\Leftrightarrow\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\left(đpcm\right)\)