Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{693432080}{2008}\le a\le\frac{693432989}{2008}\)
345334 < a \(\le\)345335
=> a = 345335 => số cần tìm 693432680 vậy x = 6 và y = 0
c: Để phương trình vô nghiệm thì \(\left(-2m\right)^2-4\left(m^2-m-1\right)< 0\)
=>4m+4<0
hay m<-1
Bài `1:`
`a)2\sqrt{17}=\sqrt{2^2 .17}=\sqrt{68}`
`3\sqrt{8}=\sqrt{3^2 .8}=\sqrt{72}`
Vì `68 < 72=>2\sqrt{17} < 3\sqrt{8}`
`b)`
`@` Với `x >= 0,x \ne 1` có:
`A=\sqrt{x}/[1-\sqrt{x}]+\sqrt{x}/[\sqrt{x}+1]+[3-\sqrt{x}]/[x-1]`
`A=[-\sqrt{x}(\sqrt{x}+1)+\sqrt{x}(\sqrt{x}-1)+3-\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`A=[-x-\sqrt{x}+x-\sqt{x}+3-\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`A=3/[\sqrt{x}+1]`
`@x=8-2\sqrt{7}=(\sqrt{7}-1)^2`
`=>\sqrt{x}=|\sqrt{7}-1|=\sqrt{7}-1`
Thay `\sqrt{x}=\sqrt{7}-1` vào `A` có: `A=3/[\sqrt{7}-1+1]=[3\sqrt{7}]/7`
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
c: \(\Leftrightarrow\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-6\right)=0\)
=>x=4 hoặc x=36
d: Đặt \(\sqrt{x}=a\)
Pt sẽ là \(a^2-a-7=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-7\right)=29>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{1-\sqrt{29}}{2}\left(loại\right)\\a_2=\dfrac{1+\sqrt{29}}{2}\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x}=\dfrac{\sqrt{29}+1}{2}\)
hay \(x=\dfrac{30+2\sqrt{29}}{4}=\dfrac{15+\sqrt{29}}{2}\)
c) Đặt \(\sqrt{x}=a\left(a\ge0\right)\)
Ta có PT
\(a^2-8a+12=0\)
\(\Delta=\left(-8\right)^2-4.12=64-48=16>0\)
PT có 2 nghiệm phân biệt
\(\left[{}\begin{matrix}a_1=\dfrac{8+\sqrt{16}}{2}=\dfrac{12}{2}=6\\a_2=\dfrac{8-\sqrt{16}}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)
Ta có
Với a = 6 thì \(\sqrt{x}=6\Leftrightarrow x=36\left(tm\right)\)
Với a = 2 thì \(\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông