Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=\left|-x-\dfrac{3}{5}\right|+\dfrac{2019}{2020}\ge\dfrac{2019}{2020}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{5}\)
a. ta có: tam giác DEF cân tại D
=> DE=DF
DK ⊥EF(K∈EF)
=> K = 90o
Xét tam giác DKE và tam giác DKF:
K = 90o
DK chung
DE = DF
=> tam giác DKE = tam giác DKF (ch-cgv)
Do m//n
=>B1=A1=80(hai góc so le trong)
B1+B2=180(hai góc kề bù)
=>B2=180-80=100
B3=B1=80(hai góc đối đỉnh)
B4=B2=100(hai góc đối đỉnh)
\(\widehat{A_1}=\widehat{B_3}=80^o\) (đồng vị)
\(\widehat{B_1}=\widehat{B_3}=80^o\) (đối đỉnh)
\(\widehat{B_1}+\widehat{B_2}=180^o\) (kề bù)
\(\Rightarrow\widehat{B_2}=180^o-\widehat{B_1}=180^o-80^o=100^o\)
\(\widehat{B_4}=\widehat{B_2}=100^o\) (đối đỉnh)
Vậy: \(\widehat{B_1}=80^o; \widehat{B_2}=100^o; \widehat{B_3}=80^o; \widehat{B_4}=100^o\)
a) \(\dfrac{3}{5}\times\dfrac{7}{9}+\dfrac{3}{5}\times\dfrac{2}{9}+\dfrac{-3}{5}\)
\(=\dfrac{3}{5}\times\dfrac{7}{9}+\dfrac{3}{5}\times\dfrac{2}{9}+\dfrac{3}{5}\times\left(-1\right)\)
\(=\dfrac{3}{5}\times\left(\dfrac{7}{9}+\dfrac{2}{9}-1\right)\)
\(=\dfrac{3}{5}\times\left(1-1\right)\)
\(=\dfrac{3}{5}\times0=0\)
b) \(\dfrac{2}{3}\cdot\dfrac{17}{13}-\dfrac{2}{3}\cdot\dfrac{4}{13}\)
\(=\dfrac{2}{3}\cdot\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
\(=\dfrac{2}{3}\cdot1=\dfrac{2}{3}\)
a/\(-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{4}{3}\right)\)
\(x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b/\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}\)
\(a.-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{\dfrac{1}{3}}{\dfrac{-4}{3}}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b)
\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}=3\\x=-\dfrac{4}{2}=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)
\(D=10\cdot\left(-2.5\right)\cdot0.4\cdot\left(-0.1\right)\)
\(=10\cdot1\cdot2.5\cdot0.4\)
=10
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{x-y}{10-9}=4\)
Do đó: x=40; y=36