![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia
câu a) 2n +5 = 2n -1 +6
vì 2n -1 chia hết cho 2n -1 nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1
suy ra 2n -1 là ước của 6
vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}
n=1; 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : n + 6 chia hết cho n - 3
=> n - 3 + 9 chia hết cho n - 3
=> 9 chia hết cho n - 3
=> n - 3 thuộc Ư(9) = {-9;-3;-1;1;3;9}
=> n thuộc {-6;0;2;4;6;12}
n+6=(n-3)+9
n-3 chia het cho n-3
nen 6 chia het cho n-3
suy ra n-3 là UC của 6
Uc(6)= 1;2;3;6
*n-3=1
n=4
*n-3=2
n=5
*n-3=3
n=6
*n-3=6
n=9
vậy n= 4;5;6;9
![](https://rs.olm.vn/images/avt/0.png?1311)
a; (n + 4) ⋮ (2n + 3)
2(n + 4) ⋮ (2n + 3)
(2n + 8) ⋮ (2n + 3)
(2n + 3 +5) ⋮ (2n + 3)
5 ⋮ (2n + 3)
(2n + 3) ϵ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2n +3 | -5 | -1 | 1 | 5 |
n | -4 | -2 | -1 | 1 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {-4; -2; -1; 1}
Vậy các giá trị nguyên cả n thỏa mãn đề bài lần lượt là:
n ϵ {-4; -2; -1; 1}
b; (2n + 4) ⋮ (3n -1)
3.(2n + 4) ⋮ (3n -1)
(6n + 12) ⋮ (3n - 1)
[2.(3n - 1) + 14] ⋮ (3n - 1)
14 ⋮ (3n - 1)
(3n - 1) ϵ Ư(14) = {-14; -7; -2; -1; 1; 2; 7; 14}
Lập bảng ta có:
3n - 1 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 |
n | - 13/3 | -2 | -1/3 | 0 | 2/3 | 1 | 8/3 | 5 |
n ϵ Z | ktm | tm | ktm | tm | ktm | tm | ktm | tm |
Theo bảng trên ta có: n ϵ {-2; 0; 1; 5}
Vậy các giá trị nguyên thỏa mãn đề bài là:
n ϵ {-2; 0; 1; 5}
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì ( 2n + 5 ) chia hết cho ( n + 1 ) => [ 2n + 5 - 2 ( n + 1 )] chia hết cho ( n + 1 )
=> 3 chia hết cho n + 1
=> n + 1 là ước của 3
với n + 1 = 1 => n = 0
với n + 1 = 3 +> n = 2
Đáp số : n= 0, n = 2
2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2.(n + 1) + 3 chia hết cho n + 1
Do 2.(n + 1) chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\)=> \(n+1\ge1\)=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, n - 2 ⋮ n + 1
=> n + 1 - 3 ⋮ n + 1
=> 3 ⋮ n + 1
=> n + 1 thuộc Ư(3)
=> n + 1 thuộc {-1; 1; -3; 3}
=> n thuộc {-2; 0; -4; 2}
b, 2n - 3 ⋮ n - 1
=> 2n - 2 - 1 ⋮ n - 1
=> 2(n - 1) - 1 ⋮ n - 1
=> 1 ⋮ n - 1
=> n - 1 thuộc {-1; 1}
=> n thuộc {0; 2}
c, 3n + 5 ⋮ 2n - 1
=> 6n + 10 ⋮ 2n - 1
=> 6n - 3 + 13 ⋮ 2n - 1
=> 3(2n - 1) + 13 ⋮ 2n - 1
=> 13 ⋮ 2n - 1
=> 2n - 1 thuộc Ư(13)
=> 2n - 1 thuộc {-1; 1; -13; 13}
=> 2n thuộc {0; 2; -12; 14}
=> n thuộc {0; 1; -6; 7}
Tham khảo:Tìm n để (n^5+1) chia hết cho (n^3+1)?
Khai triển n^5 + 1 = (1 + n)( n^4 - n^3 + n^2 - n + 1)
n^3 + 1 = (n + 1)( n^2 - n + 1)
=> n khác -1 để pháp chia có nghĩa
Để n^5 + 1 chia hết cho n^3 + 1 thì:
n^4 - n^3 + n^2 - n + 1 chia hết cho n^2 - n + 1
n^2 ( n² + n + 1) + 1 - n chia hết cho n^2 - n +1
=> 1 - n chia hết cho n² - n + 1 thì pt trên mới xảy ra chia hết
1 - n chia hết cho n² - n + 1
(-n)(1 - n) chia hết cho n² - n + 1
n² - n + 1 - 1 chia hết cho n² - n + 1
Để pt trên chia hết thì 1 chia hết cho n² - n + 1
=> n² - n + 1 = 1 => n = 0;1
n² - n + 1 = -1 => n² - n + 2 = 0 ( vô nghiệm, tự c/m)
Vậy với n = 0;1 thì ...
\(\left(2n+1\right)⋮n-5\)
\(\Rightarrow2\left(n-5\right)+11⋮n-5\)
Vì \(2\left(n-5\right)⋮n-5\Rightarrow11⋮n-5\)
\(\Rightarrow n-5\inƯ\left(11\right)\)
Mà \(Ư\left(11\right)=\left\{1;11;-1;-11\right\}\)
\(\Rightarrow n-5\in\left\{1;11;-1;-11\right\}\)
\(\Rightarrow n\in\left\{6;16;4;-6\right\}\)