Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như đề sai thì phải tia đối của AC là Ax mà sao tia phân giác của góc BAx lại cặt BC tại E được
Vì xy là tia đối của AC ( gt )
\(\Rightarrow\widehat{BAx}=180^o-100^o=80^o\)
Vì Ay là tia phân giác của \(\widehat{BAx}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAx}}{2}=\frac{80^o}{2}=40^o\)
Ta có : \(\widehat{A_1}=\widehat{C}=40^o\)
mà chúng là 2 góc đồng vị
\(\Rightarrow Ay//BC\left(dpcm\right)\)
Hok tốt!
a. Vì Ay // BC => góc yAC = góc ACB (sole trong)
góc yAx = góc ABC (đòng vị)
Mà góc ABC = góc ACB => góc yAC = góc yAx => Ay là phân giác góc CAx
b. Vì AD là phân giác góc trong BAC , Ay là phân giác góc ngoài CAx
=> Ay vuông góc với AD ( tính chất phân giác trong và ngoài )
Mà Ay // BC => góc yAD = góc ADB ( sole trong) => AD vuông góc với BC
#HT#
Giải :a) Ta có BD // Ay (gt)
=> góc DBM = góc A (so le trong)
mà góc A = 900 => góc BDM = 900
Xét tam giác AMC và tam giác BMD
có góc A = góc DBM = 900 (cmt)
MA = MB(gt)
góc AMC = góc BMD ( đối đỉnh)
=> tam giác AMC = tam giác BMD (g.c.g)
b) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> MC = MD ( hai cạnh tương ứng)
Xét tam giác MEC và tam giác MED
có MC = MD (cmt)
CME = DME (gt)
ME : chung
=> tam giác MEC = tam giác MED (c.g.c)
=> góc CEM = góc DEM (hai góc tương ứng)
Mà tia EM nằm giữa ED và EC
=> EM là tia p/giác của góc DEC (Đpcm)
c) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> BD = AC ( hai cạnh tương ứng)
Mà DE = BD + BE
hay AC + BE = DE
=> BE = DE - AC (1)
Ta lại có tam giác MEC = tam giác MED (cm câu b)
=> EC = ED (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra BE = CE - AC (Đpcm)
a) Ta có:
- Góc B = 3 * góc C (theo điều kiện đề bài).
- Góc BAC + góc BCA + góc ABC = 180° (tổng các góc trong tam giác).
- Góc BAC + góc BCA + 3 * góc C = 180° (thay thế góc B bằng 3 lần góc C).
- Góc BAC + 4 * góc C = 180°.
Gọi x là góc C. Khi đó, góc BAC = 3x và góc BCA = x. Ta có:
3x + x + 4x = 180°,
8x = 180°,
x = 22.5°.
Vậy góc C = 22.5° và góc B = 3 * 22.5° = 67.5°.
Xét tam giác ABC và tam giác AEC:
- Góc AEC là góc phụ của góc BAC (do Ax là tia đối của AC).
- Góc AEC = góc C (do góc BAC = 3 * góc C).
Vậy góc AEC = góc C.
b) Ta cần chứng minh rằng Ay song song với BE.
Xét tam giác ABC:
- Góc B = 3 * góc C (đề bài).
- Góc BAC = 180° - (góc BCA + góc ABC) = 180° - (x + 3x) = 180° - 4x.
- Góc BAE = 180° - góc BAC = 180° - (180° - 4x) = 4x.
Xét tam giác AEB:
- Góc AEB = góc BAC = 180° - 4x (tính chất của tam giác đồng biến).
- Góc ABE = 180° - góc BAE - góc AEB = 180° - 4x - (180° - 4x) = 0°.
Vậy Ay song song với BE.