Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ vế theo vế hai phương trình trên ta có phương trình:
\(y^2-x^2=x^3-y^3-4x^2+4y^2+3x-3y\)
\(\Leftrightarrow\left(x^3-y^3\right)-3\left(x^2-y^2\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3x-3y+3\right)=0\)(1)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-3x-3y+3=0\end{cases}}\)
+)Với \(x-y=0\Leftrightarrow x=y\)
Thế vào 1 trong 2 phương trình ba đầu:
Ta có: \(x^2=x^3-4x^2+3x\Leftrightarrow x^3-5x^2+3x=0\Leftrightarrow x\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5+\sqrt{13}}{2}hoacx=\frac{5-\sqrt{13}}{2}\end{cases}}\)
=> y tự làm nhé
+) Với \(x^2+xy+y^2-3x-3y+3=0\)
Ta có: \(x^2+xy+y^2-3x-3y+3=\left(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}\right)-3\left(x+\frac{y}{2}\right)+\frac{3y^2}{4}-\frac{3y}{2}+3\)
\(=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+3\left(\frac{y^2}{4}-2.\frac{y}{2}.\frac{1}{2}+\frac{1}{4}\right)-\frac{9}{4}-\frac{3}{4}+3\)
\(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2\ge0\)
"=" xảy ra khi và chỉ khi : \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Thế vào 1 trong hai phương trình ban đầu thấy ko thỏa mãn : 1^2=1^3-4.1^2+3.1 vô lí
Kết luận nghiệm:...
ĐK : \(y\ne0\) Chia cả hai vế của phương trình thứ hai cho y3
\(\Rightarrow x^3+\dfrac{x^2}{y}+\dfrac{x}{y^2}+\dfrac{1}{y^3}=4\)
\(\Leftrightarrow x^2\left(x+\dfrac{1}{y}\right)+\dfrac{1}{y^2}\left(x+\dfrac{1}{y}\right)=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)=4\)
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+x+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\ab=4\end{matrix}\right.\)
Đến đây tự làm nha
ĐK: x, y \(\ne0\)
Lấy pt dưới trừ pt trên:
\(3\left(x-y\right)=\frac{x^4+2x^2-y^4-2y^2}{x^2y^2}\)
\(\Leftrightarrow3x^2y^2\left(x-y\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2+2\right)\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2+2\right)-3x^2y^2\right]=0\)
Cái ngoặc nhỏ dễ làm rồi, còn cái ngoặc to đánh giá kiểu gì nhỉ?
1/
ĐK:\(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow t^2=10-3x-4\sqrt{4-x^2}\)
\(\Leftrightarrow4\sqrt{4-x^2}=10-3x-t^2\)
PT\(\Leftrightarrow3t+10-3x-t^2=10-3x\)
\(\Leftrightarrow t^2-3t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\) (tm) => Giải x
\(\left\{{}\begin{matrix}2x-y=x+3y+3\\3x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+x-y=x+3y+3\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3-x-3y-3=0\\x=3+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=0\\x=3+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3+0=3\end{matrix}\right.\)
Ta có : \(\begin{cases}x^2-4y=2\\3x+3y=1\end{cases}\)
\(\Leftrightarrow\begin{cases}3x^2-12y=6\left(1\right)\\12x+12y=4\left(2\right)\end{cases}\)
Cộng (1) và (2) theo vế được \(3x^2+12x=10\Leftrightarrow3x^2+12x-10=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{-6+\sqrt{66}}{3}\\x=\frac{-6-\sqrt{66}}{3}\end{array}\right.\)
Từ đó thay x vào một trong hai pt ban đầu để tìm y :)