Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
Gọi pt trên là pt (1), pt dưới là pt (2).
\(pt\left(1\right)\Leftrightarrow2x^2+\left(y-6\right)x-2y+4.\)
Ta có: \(\Delta=\left(y-6\right)^2-4\cdot2\left(4-2y\right)=y^2-12y+36-32+16y=y^2+4y+4=\left(y+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6-y+y+2}{4}=2\\x=\frac{6-y-y-2}{4}=\frac{2-y}{2}\end{cases}}\)
Với từng trường hợp thay vào pt (2) sẽ ra, tự lm nhé
Bài Trang hướng làm thì đúng nhưng bài làm thì sai. Mình chỉnh lại nhé.
Dễ thấy \(x=0\) không phải nghiệm của phương trình. Chia 2 vế của cả 2 hệ cho \(x^2\)ta được
\(\hept{\begin{cases}\frac{y}{x^2}+\frac{y^2}{x}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{y}{x}\left(\frac{1}{x}+y\right)=6\\\left(\frac{1}{x^2}+\frac{2y}{x}+y^2\right)-\frac{2y}{x}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{y}{x}\left(\frac{1}{x}+y\right)=6\\\left(\frac{1}{x}+y\right)^2-\frac{2y}{x}=5\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{y}{x}=a\\\frac{1}{x}+y=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ab=6\\b^2-2a=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{b^2-5}{2}.b=6\\a=\frac{b^2-5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b^3-5b-12=0\\a=\frac{b^2-5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{x}=2\\\frac{1}{x}+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\\frac{1}{x}+2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-3x+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}or\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}}\)
nhận thấy x=0 k là nghiệm của phương trình chia hệ phương trình cho x^2 ta được:
(y/x^2)+(y^2/x)=6
và (1/x^2)+y^2=5
<=>(y/x)(1/x +y)=6
(1/x +y)^2 -2(y/x)-5=0
đặt u=(1/x +y) ; v=y/x khi đó ta có:
uv=6
và u^2 -2v-5=0
<=>u=6/v
và u^2- 12/u -5=0 (1)
(1)<=> u^3 -5u-12 =0
<=>u=3 =>v=2
với u=3 v=2 ta có:
(1/x +y)=3
và y/x =2
<=>2x^2 -3x+1 =0
và y=2x
<=>x=1: y=1/2 hoặc x=1/2; y=1
Làm bài tốt na! Nhớ mk đó!!
Nhận thấy x=0 không là nghiệm của hệ
Xét x khác 0 . Hệ pt tương đương \(\hept{\begin{cases}\frac{y}{x^3}+\frac{y^2}{x^2}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)
Đặt \(\frac{1}{x}=a,y=b\)ta được \(\hept{\begin{cases}a^2b\left(a+b\right)=6a\\\left(a+b\right)^2-2ab=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\\left(\frac{6}{ab}\right)^2-2ab=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\-2a^3b^3+36-5a^2b^2=0\end{cases}}\)
Đến đây giải ab là ra nhaaa :))))
giải nốt hộ mình đi :|||