\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

\(x^2y+xy^2=30\Leftrightarrow\left(xy\right)^2-11xy+30=0\)

\(\orbr{\Leftrightarrow\begin{cases}xy=5\\xy=6\end{cases}}\)

Với xy=5 \(\Rightarrow x+y=6\). Suy ra x,y là hai nghiệm của phương trình : \(a^2-6a+5=0\Leftrightarrow\orbr{\begin{cases}a=1\\a=5\end{cases}}\)

Với xy=6 \(\Rightarrow x+y=5\). Suy ra x,y là hai nghiệm của phương trình: \(a^2-5a+6=0\Leftrightarrow\orbr{\begin{cases}a=2\\a=3\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(2;3\right);\left(3;2\right);\left(1;5\right);\left(5;1\right)\)

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

Nhận thấy x=0 không là nghiệm của hệ

Xét x khác 0 . Hệ pt tương đương \(\hept{\begin{cases}\frac{y}{x^3}+\frac{y^2}{x^2}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)

Đặt \(\frac{1}{x}=a,y=b\)ta được \(\hept{\begin{cases}a^2b\left(a+b\right)=6a\\\left(a+b\right)^2-2ab=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\\left(\frac{6}{ab}\right)^2-2ab=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\-2a^3b^3+36-5a^2b^2=0\end{cases}}\)

Đến đây giải ab là ra nhaaa :))))

6 tháng 2 2020

giải nốt hộ mình đi :|||

28 tháng 11 2018

hpt \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+3\left(x+y\right)-4=0\\xy\left(x+y\right)=48\end{cases}.}\)

Đặt a=x+y; b=xy

Vì x=0; y=0 ko là nghiệm của hệ nên b khác 0

Khi đó hệ pt trở \(\hept{\begin{cases}a^2-2b+3a-4=0\left(1\right)\\ab=48\left(2\right)\end{cases}}\)

Từ phương trình (2) biểu diễn a theo b, thay vào pt (1) để tìm.

11 tháng 3 2017

chang hieu gi ca

11 tháng 3 2017

mk ko hiu