K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

9 tháng 5 2020

bạn y nhân tạo của mũ a rồi cộng vào là ra được kết quả thôi mình thấy dễ mà

9 tháng 5 2020

Trả lời :

Bn Lê Thanh Vân bn y ở đâu ra ??

- Hok tốt !

^_^

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

30 tháng 3 2020

hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)

Th1: x=y

pt 2<=> 2x=6

<=> x=y=3

Th2: x+2y+1=0

<=> x=-1-2y

=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)

\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)

\(\Leftrightarrow3y^2+3y-6=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)

KL:............................

28 tháng 11 2018

\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)

\(\Rightarrow2x^2-xy+6x+y-8=0\)

\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)

Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)

Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra

20 tháng 4 2019

Dùng delta để chặn

\(pt\left(2\right)\Leftrightarrow x^2+x\left(y-3\right)+y^2-4y+4=0\)

Có \(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\)

          \(=y^2-6y+9-4y^2+16y-16\)

           \(=-3y^2+10y-7\)

Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow1\le y\le\frac{7}{3}\)

                                         \(\Rightarrow y^2\le\frac{49}{9}\)

Tương tự , pt (2) được viết lại dưới dạng sau

\(y^2+y\left(x-4\right)+x^2-3x+4=0\)

\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\)

          \(=x^2-8x+16-4x^2+12x-16\)

        \(=-3x^2+4x\)

Pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow0\le x\le\frac{4}{3}\)

                      \(\Rightarrow x^4\le\frac{256}{81}\)

\(\Rightarrow x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thử lại ta thấy ... (hình như vô nghiệm thì phải )

28 tháng 11 2018

hpt \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+3\left(x+y\right)-4=0\\xy\left(x+y\right)=48\end{cases}.}\)

Đặt a=x+y; b=xy

Vì x=0; y=0 ko là nghiệm của hệ nên b khác 0

Khi đó hệ pt trở \(\hept{\begin{cases}a^2-2b+3a-4=0\left(1\right)\\ab=48\left(2\right)\end{cases}}\)

Từ phương trình (2) biểu diễn a theo b, thay vào pt (1) để tìm.