K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

hok tốt

15 tháng 2 2020

Dạ , em xin lỗi nhưng anh có thể ghi rõ hộ em cách giải đc k ạ . Nếu đc thì tốt quá anh ạ !!

15 tháng 2 2020

bn ơi 

vào link này hỏi nè,có thể sẽ có câu tl nhanh hơn

https://hoidap247.com/

15 tháng 2 2020

oki . Cảm ơn bạn nha ^^

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

20 tháng 4 2019

Dùng delta để chặn

\(pt\left(2\right)\Leftrightarrow x^2+x\left(y-3\right)+y^2-4y+4=0\)

Có \(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\)

          \(=y^2-6y+9-4y^2+16y-16\)

           \(=-3y^2+10y-7\)

Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow1\le y\le\frac{7}{3}\)

                                         \(\Rightarrow y^2\le\frac{49}{9}\)

Tương tự , pt (2) được viết lại dưới dạng sau

\(y^2+y\left(x-4\right)+x^2-3x+4=0\)

\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\)

          \(=x^2-8x+16-4x^2+12x-16\)

        \(=-3x^2+4x\)

Pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow0\le x\le\frac{4}{3}\)

                      \(\Rightarrow x^4\le\frac{256}{81}\)

\(\Rightarrow x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thử lại ta thấy ... (hình như vô nghiệm thì phải )

28 tháng 11 2018

hpt \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+3\left(x+y\right)-4=0\\xy\left(x+y\right)=48\end{cases}.}\)

Đặt a=x+y; b=xy

Vì x=0; y=0 ko là nghiệm của hệ nên b khác 0

Khi đó hệ pt trở \(\hept{\begin{cases}a^2-2b+3a-4=0\left(1\right)\\ab=48\left(2\right)\end{cases}}\)

Từ phương trình (2) biểu diễn a theo b, thay vào pt (1) để tìm.

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

24 tháng 1 2020

Mình đề câu a phải như vậy nè:

\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)

Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)

Ta có hệ sau:

 \(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)

Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)

Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)

Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)

Câu b e nghĩ đề như vậy nè:

\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)

Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)

Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)