\(\hept{\begin{cases}x^2-3xy+2y^2=0\\2x^2-3xy+5=0\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

1 tháng 12 2019

\(x^2y+xy^2=0\Leftrightarrow xy\left(x+y\right)=0\Leftrightarrow\orbr{\begin{cases}xy=0\\x=-y\end{cases}}\)

TH1 \(x=-y\Rightarrow2x^2+3xy+2y^2=1\Leftrightarrow2y^2-3y^2+2y^2=1\Rightarrow y^2=1\Rightarrow y\Rightarrow x\)

TH2 \(xy=0\Rightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=0\\y=\frac{1}{\sqrt{2}}\end{cases}}\\\hept{\begin{cases}y=0\\\frac{1}{\sqrt{2}}\end{cases}}\end{cases}}}\)

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

29 tháng 12 2019

\(\hept{\begin{cases}2x^2+3xy+2x+y=0\left(1\right)\\x^2+2xy+2y^2+3x=0\left(2\right)\end{cases}}\)

PT(1) - PT(2), ta được : \(x^2+xy-x+y-2y^2=0\Leftrightarrow\left(x^2-y^2\right)+\left(xy-x\right)-\left(y^2-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+x\left(y-1\right)-y\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)\left(y-1\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-2y\end{cases}}\)

cứ thế mà giải , đến đây dễ rồi

25 tháng 11 2018

\(\hept{\begin{cases}x^3+y^3=1\\2y^3+x^2y+3xy^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^3+3y^3=3\\2y^3+x^2y+3xy^2=3\end{cases}}}\)

\(\Rightarrow3x^3-x^2y-3xy^2+y^3=0\)

\(\Leftrightarrow x^2\left(3x-y\right)-y^2\left(3x-y\right)=0\)

\(\Leftrightarrow\left(3x-y\right)\left(x-y\right)\left(x+y\right)=0\)

đến đây biểu diễn y thae x rồi thay vào 1 trong 2 pt là ra