Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(1\right)\\\frac{2}{x}+\frac{3}{y}=\frac{7}{12}\left(2\right)\end{cases}}\)
Lấy (2) - 2.(1) , ta có :
\(\left(\frac{2}{x}+\frac{3}{y}\right)-2\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{7}{12}-\frac{2}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{1}{12}\)
<=> y = 12
Với \(\frac{1}{y}=\frac{1}{12}\Rightarrow\frac{1}{x}=\frac{1}{6}\)
Vậy x = 6 , y = 12
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\\\frac{2}{x}+\frac{3}{y}=\frac{7}{12}\end{cases}}\)
đặt \(\frac{1}{x}=a;\frac{1}{y}=b\) hệ phương trình có dạng
\(\hept{\begin{cases}a+b=\frac{1}{4}\\2a+3b=\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b=\frac{1}{2}\\2a+3b=\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-b=-\frac{1}{12}\\a+b=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{12}\\a+\frac{1}{12}=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{12}\\a=\frac{1}{4}-\frac{1}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{6}\\b=\frac{1}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\)
vậy hệ phương trình có nghiệm duy nhất \(\hept{\begin{cases}x=6\\y=12\end{cases}}\)
c, Ap dung cong thuc sau
Dien h tam giac deu canh a = \(\frac{a^2\sqrt{3}}{4}\) (bn tu chung minh )
sau do tinh canh tam giac ABC theo R se duoc \(AB=\frac{\sqrt{3}}{2}R\) thay vao cong thuc tren la ra
d, ban tu ve hinh nha
Ta co tu giac CHMF,MHIB noi tiep
nen suy ra \(\widehat{CHF}=\widehat{CMF},\widehat{BHI}=\widehat{BMI}\) (1)
ma \(\widehat{MCF}=\widehat{MBI}\) (tu giac ABMC noi tiep)
=> \(\widehat{CMF}=\widehat{BMI}\) phu 2 goc bang nhau (2)
tu (1),(2) => \(\widehat{CHF}=\widehat{BHI}\) => H,I,F thang hang
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
\(\hept{\begin{cases}\frac{3}{5x}+\frac{1}{y}=\frac{1}{10}\\\frac{3}{4x}+\frac{3}{4y}=\frac{1}{12}\end{cases}}\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y}\)ta có HPT:
\(\hept{\begin{cases}\frac{3}{5}a+b=\frac{1}{10}\\\frac{3}{4}a+\frac{3}{4}b=\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3}{5}a+b=\frac{1}{10}\\a+b=\frac{1}{9}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{36}\\b=\frac{1}{12}\end{cases}}}\)
Trở lại phép ẩn dụ ta có:
\(\hept{\begin{cases}\frac{1}{x}=\frac{1}{36}\\\frac{1}{y}=\frac{1}{12}\end{cases}\Leftrightarrow\hept{\begin{cases}x=36\\y=12\end{cases}}}\)
đặt \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{1}{y}\end{cases}}\)
khi đó hpt có dạng
\(\hept{\begin{cases}\frac{3}{5}.a+b=\frac{1}{10}\\\frac{3}{4}.a+\frac{3}{4}.b=\frac{1}{12}\end{cases}}\)
=>\(\hept{\begin{cases}a=\frac{1}{36}\\b=\frac{1}{12}\end{cases}}\) ( nhấn máy tính nhé)
=>\(\hept{\begin{cases}x=36\\y=12\end{cases}}\)