Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tôn trọng bản quyền nè Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến (đề ko cho a,b,c dương nên ko dám manh động :)))
b)Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y+1}{8}+\dfrac{z+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\cdot\dfrac{y+1}{8}\cdot\dfrac{z+1}{8}}=\dfrac{3x}{4}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(VT+\dfrac{2\left(x+y+z+3\right)}{8}\ge\dfrac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{xyz}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{xyz}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Xảy ra khi \(x=y=z=1\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
d)ĐK:\(x,y\ge2\)
Trừ từng vế 2 pt ta được:
\(\sqrt{x+5}-\sqrt{y+5}=\sqrt{x-2}-\sqrt{y-2}\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+5}+\sqrt{y+5}}=\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+5}+\sqrt{y+5}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)
Do \(\frac{1}{\sqrt{x+5}+\sqrt{y+5}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}=0\) vô nghiệm nên \(x=y\)
Khi đó hệ trở thành \(\left\{\begin{matrix}x=y\\\sqrt{x+5}+\sqrt{x-2}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=y\\2x+3+2\sqrt{\left(x+5\right)\left(x-2\right)}=49\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=y\\\sqrt{\left(x+5\right)\left(x-2\right)}=23-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=y\\x\le23\\49x=539\end{matrix}\right.\)\(\Leftrightarrow x=y=11\) (thỏa mãn)
Ta có: \(\left\{{}\begin{matrix}x^2+4y^2=5\left(1\right)\\4xy+x+2y=7\left(2\right)\end{matrix}\right.\)
Cộng (1) với (2) ta được:
\(x^2+4xy+4y^2+x+2y=12\)
<=> \(\left(x+2y\right)^2+\left(x+2y\right)=12\) (*)
Đặt \(x+2y=a\) => (*) trở thành:
\(a^2+a-12=0\)
<=> \(\left(a^2-3a\right)+\left(4a-12\right)=0\)
<=> \(a\left(a-3\right)+4\left(a-3\right)=0\)
<=> \(\left(a+4\right)\left(a-3\right)=0\)
<=> \(\left[{}\begin{matrix}a=-4\\a=3\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+2y=-4\\x+2y=3\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-4-2y\left(3\right)\\x=3-2y\left(4\right)\end{matrix}\right.\)
Xét TH: x = - 4 - 2y ta được: 4xy -4 = 7
=> 4xy = 11
=> 4 ( -4 - 2y)y = 11
=> -16y - 8y2 - 11 = 0
=> \(8\left(y^2+2y+1\right)+3=0\)=> PT vô nghiệm
Xét TH: x = 3- 2y ta được : 4xy + 3 = 7
=> 4 ( 3-2y)y = 4
<=> 3y - 2y2 - 1 = 0
<=> 2y(y - 1) -( y -1 )= 0
<=> \(\left[{}\begin{matrix}y=1\\y=\dfrac{1}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy .................................
ông này rảnh quá ta, t nghĩ you phải thừa sức lm bài này chứ :v