K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

\(hpt\Leftrightarrow\begin{cases}y=\frac{60x^2}{36x^2+25}\\z=\frac{60y^2}{36y^2+25}\\x=\frac{60z^2}{36z^2+25}\end{cases}\)

Từ hệ suy ra x,y,z không âm. Nếu x=0 thì y=z=0 suy ra (0;0;0) là nghiệm của hệ phương trình.

Nếu x>0 thì y>0, z>0. Xét hàm số \(f\left(t\right)=\frac{60t^2}{36t^2+25},t>0\)

Ta có: \(f'\left(t\right)=\frac{3000t}{\left(36t^2+25\right)^2}>0\) với mọi t>0

Do đó \(f\left(t\right)\) đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hệ pt đc viết lại \(\begin{cases}y=f\left(x\right)\\z=f\left(y\right)\\x=f\left(z\right)\end{cases}\)

Từ tính đồng biến của f(x) suy ra x=y=z. Thay vào hệ ta được

x(36x2-60x+25)=0. Chọn \(x=\frac{5}{6}\)

Vậy tập nghiệm của hệ pt là \(\left\{\left(0;0;0\right);\left(\frac{5}{6};\frac{5}{6};\frac{5}{6}\right)\right\}\)

19 tháng 9 2016

Khuyến khích cho sự "chơi trội" của you ^^ ahihi

12 tháng 8 2020

\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\left(1\right)\\y^2+x+2y\sqrt{x}-y^2x=0\left(2\right)\end{cases}}\)

đk: x>=0 và x>= y+1

ta có \(\left(1\right)\Leftrightarrow\sqrt{x}=1+\sqrt{x-y-1}\)

\(\Leftrightarrow x=1+x-y-1+2\sqrt{x-y-1}\Leftrightarrow2\sqrt{x-y-1}=y\)

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(x-y-1\right)=y^2\end{cases}\Leftrightarrow\hept{\begin{cases}y\ge0\\4x=\left(y+2\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\\left|y+2\right|=2\sqrt{x}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\ge0\\y+2=2\sqrt{x}\end{cases}}}\)

thay vào (2) \(\left(y+\sqrt{x}\right)^2=\left(y\sqrt{x}\right)^2\)

\(\Leftrightarrow y+\sqrt{x}=y\sqrt{x}\)ta được \(y+\frac{y+2}{2}=y\left(\frac{y+2}{2}\right)\)

\(\Leftrightarrow y^2-y-2=0\Leftrightarrow\orbr{\begin{cases}y=-1\left(loai\right)\\y=2\end{cases}}\)

do đó nghiệm hệ \(\hept{\begin{cases}x=4\\y=2\end{cases}}\)

3 tháng 7 2016

Tổng hợp hệ pt

18 tháng 1 2017

\(\left\{\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\left(1\right)\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\left(2\right)\end{matrix}\right.\)

Ta có:

\( (2)\Leftrightarrow xy\left ( x^2+y^2 \right )=x^2+2xy+y^2 \\\ \Leftrightarrow\left (xy-1 \right )\left ( x^2+y^2-2 \right )=0\)

*)TH1: \(xy=1\) thay vào \((1)\) ta được:

\(5x-4y+3y^3-2(x+y)=0\)

\(\Leftrightarrow y^4-2y^2+1=0\)\(\Leftrightarrow y=\pm 1\Rightarrow x=\pm 1\)

*)TH2: \(x^2+y^2=2\).Thay vào \((1)\) ta được:

\(5x^2y-4xy^2+3y^3-(x^2+y^2)(x+y)=0\)

\(\Leftrightarrow 2y^3+4x^2y-5xy^2-x^3=0\)

\(\Leftrightarrow (y^3-x^3)+(y^3+4x^2y-5xy^2)=0\)

\(\Leftrightarrow (y-x)^2(2y-x)=0\)

Với \(x=y\) ta tìm được 2 nghiệm \((x;y)=(1;1); (-1;-1)\)

Với \(x=2y\) thay vào \(x^2+y^2=2\) ta tìm được \(y=\pm \sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)

Vậy nghiệm của hệ phương trình đã cho là :\((x;y)=(1;1); (-1;-1); \left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right); \left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right) \)

2 tháng 2 2020

\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)

Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:

\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)

\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)

Từ đây tự tìm nốt nhé