\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2019

\(x^2-\left(3y+2\right)x+2y^2+4y=0\)

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+2-y+2}{2}=y+2\\x=\frac{3y+2+y-2}{2}=2y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\2y=x\end{matrix}\right.\)

TH1: \(\) \(y=x-2\)

\(\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\)

\(\Leftrightarrow\left(x^2-5\right)^2=9\Rightarrow\left[{}\begin{matrix}x^2-5=3\\x^2-5=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm2\sqrt{2}\Rightarrow y=-2\pm2\sqrt{2}\\x=\pm\sqrt{2}\Rightarrow y=-2\pm\sqrt{2}\end{matrix}\right.\)

TH2: \(2y=x\)

\(\Leftrightarrow\left(x^2-5\right)^2=2x-x+5\Leftrightarrow\left(x^2-5\right)^2=x+5\)

Đặt \(x^2-5=a\Rightarrow5=x^2-a\) pt trở thành:

\(a^2=x+x^2-a\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-x=0\\a+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2-5+x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

Bạnt ự giải nốt

18 tháng 1 2019

\(\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y-5\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{matrix}\right.\)

\(PT\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-y=0\\x+2y-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{y}{2}\\x=5-2y\end{matrix}\right.\)

Với \(x=\dfrac{y}{2}\) : \(PT\left(2\right)\Leftrightarrow\dfrac{y^2}{4}-y^2-3y^2+15=0\)

\(\Leftrightarrow-15y^2+60=0\)

\(\Leftrightarrow y^2-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Với \(x=5-2y\) : \(PT\left(2\right)\Leftrightarrow\left(5-2y\right)^2-2y\left(5-2y\right)-3y^2+15=0\)

\(\Leftrightarrow4y^2-20y+25+4y^2-10y-3y^2+15=0\)

\(\Leftrightarrow5y^2-30y+40=0\)

\(\Leftrightarrow y^2-6y+8=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy phương trình có 3 cặp nghiệm : \(\left[{}\begin{matrix}\left(x;y\right)=\left(-1;-2\right)\\\left(x;y\right)=\left(1;2\right)\\\left(x;y\right)=\left(-3;4\right)\end{matrix}\right.\)

26 tháng 7 2018

Ta có:

\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-2x\right)-\left(2xy-4y\right)-\left(xy-2y^2\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)-2y\left(x-2\right)-y\left(x-2y\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-2y\right)-y\left(x-2y\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x-2y\right)=0\\x^4-10x^2+25=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y-2=0\\x-2y=0\end{matrix}\right.\\x^4-10x^2+20-2x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\x^4-10x^2+20-2x+2\left(x-2\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\x^4-10x^2+20-2x+\dfrac{2x}{2}=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\x^4-10x^2+16=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\x^4-10x^2-x+20=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left(x^2-8\right)\left(x^2-2\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left(x^2-x-5\right)\left(x^2+x-4\right)=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x^2-x-5=0\\x^2+x-4=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x=\sqrt{8}\\x=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{21}}{2}\\x=\dfrac{1-\sqrt{21}}{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{17}}{2}\\x=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}y=\sqrt{8}-2\\x=\sqrt{8}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\sqrt{8}-2\\x=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=\sqrt{2}-2\\x=\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\sqrt{2}-2\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{1+\sqrt{21}}{4}\\x=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\\\end{matrix}\right.\) (CÒN MỘT VÀI TRƯỜNG HỢP BÊN TRÊN MK KO VIẾT HẾT ĐƯỢC BẠN TỰ TÌM Y NHA)

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)

NV
12 tháng 8 2020

\(x^2-\left(3y-2\right)x+2y^2-4y=0\)

\(\Delta=\left(3y-2\right)^2-4\left(2y^2-4y\right)=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-2+y+2}{2}=2y\\x=\frac{3y-2-y-2}{2}=y-2\end{matrix}\right.\)

Thế xuống dưới:

\(\Rightarrow\left[{}\begin{matrix}4y^2+y^2-2y^2+2y-5=0\\\left(y-2\right)^2+y^2-y\left(y-2\right)+2y-5=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Giải hệ phương trình 1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\) 2....
Đọc tiếp

Giải hệ phương trình

1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)

7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)

8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)

9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)

10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)

12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)

13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)

15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)

16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)

18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ

11
28 tháng 11 2019

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

28 tháng 11 2019

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

21 tháng 3 2020

1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)

2) 2 pt 3 ẩn không giải được.

3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

21 tháng 3 2020

Nguyễn Thành Trương 2GP cả công đánh máy nữa nhé.