\(\hept{\begin{cases}x^3+2y^3+2y^2=2xy\left(x+1\right)\\3xy=2\left(x^2-y\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

1. Hướng làm đặt kiểu tổng tích.
\(\hept{\begin{cases}4x^2-4x+4\left(y^2-2y\right)=22-1-4=17\\\left(4x^2-4x\right).4\left(y^2-2y\right)=2.16=32\end{cases}}\)

2. \(x^2y^2+2y-x-x^2y^2-x-y=2xy-3xy \)
\(y-2x=xy< => y\left(1-x\right)=2x=>y=\frac{2x}{1-x}\)
. Hoặc 
chia 2 vế pt cho xy(xy khác 0)  vầ đặt biến \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\)

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

5 tháng 7 2017

1. Xét PT 2. Xét \(x^2y=0\)=>......

Xét \(x^2y\ne0\)Chia 2 vế pt 1 cho x^2y^2, chia 2 vế pt 2 cho x^2y rồi đặt 1/x=a, 1/y=b

=>\(\hept{\begin{cases}a^2+b^2=2\\a^2+8+3ab=5b^2+7a\end{cases}}\)=>\(a^2+a^2+b^2+6+3ab=5b^2=7a.\)Phân tích thành nhân tử

5 tháng 7 2017

Đề nghị bạn xem lại đề câu 2.

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)