K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

ta lấy phương trình (1) trừ phương trình (2) ta được :

     x  +  y   -  xy  =   1

  \(\Leftrightarrow\)x  +  y   -  xy  - 1  =  0 

\(\Leftrightarrow\)x  (    1   -   y  )   -  (1  -  y)  =  0

\(\Leftrightarrow\)(1  -   y )(x -  1)  =  0

\(\Leftrightarrow\)\(\orbr{\begin{cases}1-y=0\\x-1=0\end{cases}}\)

Với \(1-y=0\Rightarrow y=1\Rightarrow x^2+1+x=7\Rightarrow x^2+x-6=0\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Với \(x-1=0\Rightarrow x=1\Rightarrow1+y^2+y=7\Rightarrow y^2+y-6=0\Rightarrow\orbr{\begin{cases}y=-3\\y=2\end{cases}}\)

Vậy ta có các cặp nghiệm (x ; y) tương ứng là  (1; -3) , (1; 2) ; (2; 1) , (-3; 1)

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

20 tháng 10 2016

a)Áp dụng Bđt Bunhiacopski ta có:

\(VT^2\le\left(1^2+1^2\right)\left(7-x+x-5\right)=2\cdot2=4\)

\(VT^2\le4\Rightarrow VT\le2\left(1\right)\)

\(VP=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT=VP=2\)

\(\Rightarrow\hept{\begin{cases}\sqrt{7-x}+\sqrt{x-5}=2\\x^2-12x+38\end{cases}}\)\(\Leftrightarrow x=6\)

Vậy nghiệm của pt là x=6

13 tháng 11 2017

em ko bít làm

21 tháng 10 2019

Từ HPT  (=) căn(x) . [căn(x)^3 - căn(y)^3] = 36 (1)

                    căn(y) . [căn(y)^3 - căn(x)^3] = 72  (2)

từ  (1) và   (2) =) căn(y) . [căn(y)^3 - căn(x)^3] = 2.căn(x) . [căn(x)^3 - căn(y)^3]

(=)  [căn(x)^3 - căn(y)^3] . [2.căn(x) + căn(y)] = 0

tự giải phần còn lại

chúc bn hc tốt

28 tháng 11 2018

\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)

\(\Rightarrow2x^2-xy+6x+y-8=0\)

\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)

Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)

Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra