Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải HPT \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
ĐKXĐ: ...
\(xy+x+y=x^2-2y^2\Leftrightarrow x^2-xy-2y^2-\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(vn\right)\\x=2y+1\end{matrix}\right.\)
\(\Rightarrow\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=2\left(2y+1\right)-2y\)
\(\Leftrightarrow\sqrt{2y}\left(y+1\right)=2\left(y+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\left(l\right)\\\sqrt{2y}=2\end{matrix}\right.\) \(\Rightarrow y=2\Rightarrow x=5\)
gợi ý:\(pt\left(2\right)\Leftrightarrow\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)=21\)
\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)
\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)