\(\begin{cases}x^4-y^4=240\\ x^3-2y^3=3(x^2-4y)^2-4(x-8y)\end{cases}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Quen quen :v. Nhân pt(2) với 8 rồi trừ theo vế của pt(1) cho 8pt(2) có:

\(x^4-8x^3+24x^2-32x+16=y^4-16y^3+96y^2-256y+256\)

\(\Leftrightarrow(x-2)^4=(y-4)^4\)

Suy ra x-2=y-4 hoặc x-2=-y+4

Tiếp nhé :v

8 tháng 1 2017

Nhân phương trình thứ hai với -8 rồi cộng vào phương trình thứ nhất, ta được:

x4 - 8x3 +24x2 - 32x + 16 = y4 - 16y3 +96y- 256y + 256

<=> (x - 2)4 = (y - 2)4

<=>\(\orbr{\begin{cases}x-2=y-4\\x-2=4-y\end{cases}}\)

<=>\(\orbr{\begin{cases}x=y-2\\x=6-y\end{cases}}\)

Với x = y - 2, thay vào phương trình 1 ta được:

-8y3 + 24y- 32y + 16 = 240

<=> y3 - 3y+ 4y + 28 = 0

<=> (y + 2)(y- 5y + 14 ) = 0

<=> y = -2 ; x = -4

Với x = 6 - y, thay vào phương trình 1 ta được:

-24y3 + 216y- 864y + 1296 = 240

<=> y3 - 9y+ 36y - 44 = 0

<=> (y - 2)(y- 7y + 22 ) = 0

<=> y = 2 ; x = 4

Vậy hệ phương trình đã cho có hai nghiệm trên.

8 tháng 1 2017

Thấy giống AILABA quá

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

7 tháng 1 2017

\(\hept{\begin{cases}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}x^4-y^4=240\\8x^3-16y^3=24\left(x^2-4y^2\right)-32\left(x-8y\right)\end{cases}}\)

Lấy trên trừ dưới ta được

x4 - y4 - 8x3 + 16y3 + 24x2 - 96y2 - 32x + 256y - 240 = 0

<=> (x + 2 - y)(x + y - 6)(y2 - 8y + x2 - 4x + 20) = 0

Làm tiếp nhé

7 tháng 1 2017

Với x = y - 2

Thế vào pt đầu ta được

(y - 2)4 - y4 = 240

<=> y3 - 3y2 + 4y + 28 = 0

<=> (y + 2)(y2 - 5y + 14) = 0

<=> y = - 2

=> x = - 4

12 tháng 2 2017

3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)

Xét phương trình (2) ta có:

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

Để PT theo nghiệm x có nghiệm thì 

\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\)

\(\Leftrightarrow1\le y\le\frac{7}{3}\)

\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)

Tương tự ta có:

\(0\le x\le\frac{4}{3}\)

\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)

Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm

11 tháng 2 2017

1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)

Xét phương trình đầu ta có

\(xy+x+y-x^2+2y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)

\(\Rightarrow x=1+2y\)

Thế vào pt dưới ta được

\(\sqrt{2y}\left(y+1\right)=2y+2\)

\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)

Tới đây tự làm tiếp nhé 

17 tháng 1 2019

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

17 tháng 1 2019

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé

24 tháng 1 2020

Mình đề câu a phải như vậy nè:

\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)

Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)

Ta có hệ sau:

 \(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)

Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)

Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)

Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)

Câu b e nghĩ đề như vậy nè:

\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)

Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)

Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)

11 tháng 7 2019

Ta có:

\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)

Thay (2) vào (1):

\(4y-4+|y-1|=5\left(3\right)\)

+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)

Thay y = 8/5 vào (2) ta có: 

\(|x+1|=4.\frac{8}{5}-4\)

\(\Leftrightarrow|x+1|=\frac{12}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)

+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)