K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

a) \(x^2-8\text{ }x+16=0\)

\(\Leftrightarrow\left(x-4\right)^2=0\)

\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

b) \(\left(3x-2\right)^2-49=0\) 

\(\Leftrightarrow\left(3x-2\right)^2=49\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=\sqrt{49}\\3x-2=-\sqrt{49}\end{cases}}\Rightarrow\orbr{\begin{cases}3x=9\\3x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{5}{3}\end{cases}}\)

c) \(\left(10x-5\right)^2-9x^2=0\)

\(\Leftrightarrow\left(7x-5\right)\left(13x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x-5=0\\13x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}\\x=\frac{5}{13}\end{cases}}\)

d) \(\left(7x+1\right)^2-25x^2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(12x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\12x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{1}{12}\end{cases}}\)

14 tháng 6 2023

`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`

`<=> 4 + 3 + (-5x) + (-2)=0`

`<=> -5x+5=0`

`<=>-5x=-5`

`<=>x=1`

`2,(25x^2-10x):5x +3(x-2)=4`

`<=> 5x - 2 + 3x-6=4`

`<=> 8x -8=4`

`<=> 8x=12`

`<=>x=12/8`

`<=>x=3/2`

`3,(3x+1)^2-(2x+1/2)^2=0`

`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`

`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`

`<=>( x+1/2) (5x+3/2)=0`

`@ TH1`

`x+1/2=0`

`<=>x=0-1/2`

`<=>x=-1/2`

` @TH2`

`5x+3/2=0`

`<=> 5x=-3/2`

`<=>x=-3/2 : 5`

`<=>x=-15/2`

`4, x^2+8x+16=0`

`<=>(x+4)^2=0`

`<=>x+4=0`

`<=>x=-4`

`5, 25-10x+x^2=0`

`<=> (5-x)^2=0`

`<=>5-x=0`

`<=>x=5`

14 tháng 6 2023

\(x^2+8x+16=x^2+2.x.4+4^2=\left(x+4\right)^2\)

\(25-10x+x^2=5^2-2.5.x+x^2=\left(5-x\right)^2\)

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

5: =>4x^2-1/9=0

=>(2x-1/3)(2x+1/3)=0

=>x=1/6 hoặc x=-1/6

6: =>x-1=2

=>x=3

7:=>(2x-1)^3=-27

=>2x-1=-3

=>2x=-2

=>x=-1

8: =>1/8(x-1)^3=-125

=>(x-1)^3=-1000

=>x-1=-10

=>x=-9

3: =>(5x-5)^2-4=0

=>(5x-7)(5x-3)=0

=>x=3/5 hoặc x=7/5

4: =>(5x-1)^2=0

=>5x-1=0

=>x=1/5

1: =>(3x-1)(2x-1)=0

=>x=1/3 hoặc x=1/2

2: =>x^2(2x-3)-4(2x-3)=0

=>(2x-3)(x^2-4)=0

=>(2x-3)(x-2)(x+2)=0

=>x=3/2;x=2;x=-2

14 tháng 7 2023

`@` `\text {Answer}`

`\downarrow`

`1,`

\(2x\left(3x-1\right)+1-3x=0\)

`<=> 2x(3x - 1) - 3x + 1 = 0`

`<=> 2x(3x - 1) - (3x - 1) = 0`

`<=> (2x - 1)(3x-1) = 0`

`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy,  `S = {1/2; 1/3}`

`2,`

\(x^2\left(2x-3\right)+12-8x=0\)

`<=> x^2(2x - 3) - 8x + 12 =0`

`<=> x^2(2x - 3) - (8x - 12) = 0`

`<=> x^2(2x - 3) - 4(2x - 3) = 0`

`<=> (x^2 - 4)(2x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy, `S = {+-2; 3/2}`

`3,`

\(25\left(x-1\right)^2-4=0\)

`<=> 25(x-1)(x-1) - 4 = 0`

`<=> 25(x^2 - 2x + 1) - 4 = 0`

`<=> 25x^2 - 50x + 25 - 4 = 0`

`<=> 25x^2 - 15x - 35x + 21 = 0`

`<=> (25x^2 - 15x) - (35x - 21) = 0`

`<=> 5x(5x - 3) - 7(5x - 3) = 0`

`<=> (5x - 7)(5x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy, `S = {7/5; 3/5}`

`4,`

\(25x^2-10x+1=0\)

`<=> 25x^2 - 5x - 5x + 1 = 0`

`<=> (25x^2 - 5x) - (5x - 1) = 0`

`<=> 5x(5x - 1) - (5x - 1) = 0`

`<=> (5x - 1)(5x-1)=0`

`<=> (5x-1)^2 = 0`

`<=> 5x - 1 = 0`

`<=> 5x = 1`

`<=> x = 1/5`

Vậy,` S = {1/5}.`

26 tháng 1 2021

1)    x^2-x-(3x-3)=0

⇔   X^2-x-3x+3=0

⇔  x^2-4x+3     =0

⇔x^2-3x-x+3    =0

⇔ x(x-3)-(x-3)   =0

⇔(x-1)(x-3)       =0

⇔  x-1=0       -> x=1

      x-3=0       ->  x=3

Vậy tập nghiệm S={ 1;3}

26 tháng 1 2021

(3x-2)(4x+5)=0

⇔ 3x-2=0  -> x= 2/3      

 ⇔ 4x-5=0     x= 5/4

Vậy tập nghiệm S = { 2/3; 5/4}

26 tháng 1 2021

2,    (4x+2)(\(X^2\)+3)=0

⇔ 4x+2=0         ->   x= -1/2    

     \(x^2\)+3=0         -> x= \(\sqrt{3}\); -\(\sqrt{3}\)

Vaayj tập nghiệm S= { -1/2; \(\sqrt{3}\);-\(\sqrt{3}\)}

 

12 tháng 8 2021

1/ x2-3x+2=0

⇒ (x2-2x)-(x-2)=0

⇒ x(x-2)-(x-2)=0

⇒ (x-1)(x-2)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2) x2-6x+5=0

⇒x2-6x+9-4=0

⇒(x2-6x+9)-22=0

⇒(x-3)2-22=0

⇒(x-3-2)(x-3+2)=0

⇒(x-5)(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3) 2x2+5x+3=0

⇒ (2x2+2x)+(3x+3)=0

⇒ 2x(x+1)+3(x+1)=0

⇒ (x+1)(2x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)

4) x2-8x+15=0

⇒ (x2-8x+16)-1=0

⇒ (x-4)2-12=0

⇒ (x-4-1)(x-4+1)=0

⇒ (x-5)(x-3)=0

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5) x2-x-12=0

⇒ (x2-4x)+(3x-12)=0

⇒ x(x-4)+3(x-4)=0

⇒ (x-4)(x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

1: Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: Ta có: \(x^2-6x+5=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3: Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4: Ta có: \(x^2-8x+15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5: Ta có: \(x^2-x-12=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

11 tháng 11 2021

ở oooo

11 tháng 11 2021

hihi

18 tháng 8 2021

1.

 \(x^2-5x+6=0\\ \Rightarrow x^2-2x-3x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

2.

\(\left(x+4\right)^2-\left(3x-1\right)^2=0\\ \Rightarrow\left(x+4-3x+1\right)\left(x+4+3x-1\right)=0\\ \Rightarrow\left(-2x+5\right)\left(4x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2x+5=0\\4x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

3.

\(x^2-2x+24=0\\ \Rightarrow\left(x^2-2x+1\right)+23=0\\ \Rightarrow\left(x-1\right)^2+23=0\)

Vì (x-1)2≥0

23>0

\(\Rightarrow\left(x-1\right)^2+23>0\)

Vậy x vô nghiệm

4.

\(9x^2-4=0\\ \Rightarrow\left(3x-4\right)\left(3x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

5.

\(x^2+2x-8=0\\ \Rightarrow\left(x^2+2x+1\right)-9=0\\ \Rightarrow\left(x+1\right)^2-3^2=0\\ \Rightarrow\left(x-2\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)