K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(M=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(M=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(M=x-1\)

27 tháng 12 2018

\(M=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-4x-4}{\left(x-2\right)\left(x+2\right)}\)

30 tháng 12 2019

xin slot tối làm =)

24 tháng 12 2019

Điều kiện xác định: \(\left\{{}\begin{matrix}x\ne2\\y\ge-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\frac{2}{x-2}+3\sqrt{y+1}=4\\\frac{4}{x-2}-\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x-2}+6\sqrt{y+1}=8\\\frac{4}{x-2}-\sqrt{y+1}=1\end{matrix}\right.\Leftrightarrow7\sqrt{y+1}=7\)

\(\Leftrightarrow y+1=1\Leftrightarrow y=0\Rightarrow x=4\)

Vậy........

30 tháng 12 2019

ĐK: \(y\ge-1\)\(x\ne2\)

bạn đặt ẩn phụ để giải cho gọn nhé

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-2}=a\\\sqrt{y+1}=b\end{matrix}\right.\)

hệ pt: \(\left\{{}\begin{matrix}2a+3b=4\\4a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-2}=\frac{1}{2}\\\sqrt{y+1}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy hệ có no

NV
6 tháng 5 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+19\sqrt{x}-14}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+7\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

14 tháng 12 2017

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2019

Em muốn mọi người giải bài nhanh nhưng đến đề bài em cũng chưa ghi đủ?

28 tháng 10 2019

à vâng ạ

10 tháng 7 2019

ĐK : \(x\ne0;-1;2\)

a) \(A=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(A=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(A=1+\frac{x+1+x+1-2\left(x^2-x+1\right)}{x^3+1}\cdot\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)

\(A=1+\frac{-2x^2\left(x-2\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)\cdot x^2\left(x-2\right)}\)

\(A=1+\frac{-2}{x+1}\)

\(A=\frac{x-1}{x+1}\)

b) Để \(A\in Z\)\(\Leftrightarrow x-1⋮x+1\)

\(\Leftrightarrow x+1-2⋮x+1\)

\(\Leftrightarrow-2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;1;-3\right\}\)( thỏa )

Vậy....