K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2021

a. Gọi \(E\left(x;y\right)\Rightarrow\overrightarrow{EA}=\left(1-x;3-y\right)\) ; \(\overrightarrow{EB}=\left(5-x;4-y\right)\) ; \(\overrightarrow{ED}=\left(-3-x;-4-y\right)\)

\(\Rightarrow\overrightarrow{EA}+\overrightarrow{ED}-3\overrightarrow{EB}=\left(x-17;y-13\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-17=0\\y-13=0\end{matrix}\right.\) \(\Rightarrow E\left(17;13\right)\)

b. Hạ AH vuông góc CD

\(S_{ADI}=\dfrac{1}{2}AH.DI\) ; \(S_{ABCD}=\dfrac{1}{2}AH.\left(AB+CD\right)\)

\(\Rightarrow\dfrac{1}{2}AH.DI=\dfrac{3}{5}.\dfrac{1}{2}AH\left(AB+CD\right)\)

\(\Rightarrow DI=\dfrac{3}{5}\left(AB+CD\right)=\dfrac{3}{5}\left(AB+DI+AB\right)\)

\(\Leftrightarrow\dfrac{2}{5}DI=\dfrac{6}{5}AB\Rightarrow DI=3AB\)

\(\Rightarrow\overrightarrow{DI}=3\overrightarrow{AB}\Rightarrow I\left(9;-1\right)\)

Phương trình AI: \(x+2y-7=0\)

Phương trình BD: \(x-y-1=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(3;2\right)\)

4 tháng 1 2021

Em cảm ơn 

Câu 1:
TXĐ:D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=2x^4-3x^2+1=f\left(x\right)\)

=>f(x) là hàm số chẵn

 

20 tháng 4 2022

Tách bài riêng ra nhé

20 tháng 4 2022

úi dời, ai mà ấy được tách đoạn ra ối dồi ôioho

21 tháng 10 2021

Chọn A

21 tháng 10 2021

bài 4 ạ 

NV
5 tháng 1 2021

ĐKXĐ: \(-1\le x\le4\)

\(\Leftrightarrow\left(x-3\right)\sqrt{1+x}-\left(x-3\right)+x-x\sqrt{4-x}=2x^2-6x\)

\(\Leftrightarrow\left(x-3\right)\left(\sqrt{1+x}-1\right)+x\left(1-\sqrt{4-x}\right)=2x^2-6x\)

\(\Leftrightarrow\dfrac{x\left(x-3\right)}{\sqrt{1+x}+1}+\dfrac{x\left(x-3\right)}{1+\sqrt{4-x}}=2\left(x^2-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\Rightarrow x=...\\\dfrac{1}{\sqrt{1+x}+1}+\dfrac{1}{1+\sqrt{4-x}}=2\left(1\right)\end{matrix}\right.\)

Xét (1), do \(VT< \dfrac{1}{1}+\dfrac{1}{1}=2\Rightarrow VT< VP\Rightarrow\left(1\right)\) vô nghiệm

Vậy ...

NV
24 tháng 3 2021

6.

\(\Leftrightarrow x^2+4x+3>m\) ; \(\forall x>1\)

\(\Leftrightarrow m< \min\limits_{x>1}\left(x^2+4x+3\right)\)

Xét hàm \(f\left(x\right)=x^2+4x+3\) với \(x>1\)

\(-\dfrac{b}{2a}=-2< 1\) ; \(f\left(1\right)=8\Rightarrow f\left(x\right)>8\) ; \(\forall x>1\)

\(\Rightarrow m\le8\)

7.

Do C thuộc d nên tọa độ có dạng: \(C\left(-2c-1;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;6\right)\\\overrightarrow{CA}=\left(2c;1-c\right)\end{matrix}\right.\)

\(AB\perp AC\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Leftrightarrow4.2c+4\left(1-c\right)=0\)

\(\Leftrightarrow4c+4=0\Rightarrow c=-1\Rightarrow C\left(1;-1\right)\)

b.

 \(AB=\sqrt{4^2+6^2}=2\sqrt{13}\)

Phương trình đường thẳng AB qua A và nhận \(\left(3;-2\right)\) là 1 vtpt có dạng:

\(3\left(x+1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y+5=0\)

Do d thuộc d nên tọa độ có dạng: \(D\left(-2d-1;d\right)\)

\(S_{ABD}=\dfrac{1}{2}AB.d\left(D;AB\right)=50\)

\(\Leftrightarrow\dfrac{\sqrt{13}\left|3\left(-2d-1\right)-2d+5\right|}{\sqrt{3^2+\left(-2\right)^2}}=50\)

\(\Leftrightarrow\left|-8d+2\right|=50\Rightarrow\left[{}\begin{matrix}d=-6\\d=\dfrac{13}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(11;-6\right)\\D\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

24 tháng 3 2021

2.

a, Gọi \(C=\left(-2m-1;m\right)\) là điểm cần tìm

\(AB=2\sqrt{13};AC=\sqrt{5m^2-2m+1};BC=\sqrt{5m^2+2m+65}\)

Ta có \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow5m^2+2m+65=52+5m^2-2m+1\)

\(\Leftrightarrow m=-3\)

\(\Rightarrow C=\left(5;-3\right)\)

b, Gọi \(D=\left(-2n-1;n\right)\) là điểm cần tìm

Đường thẳng AB có phương trình \(\dfrac{x+1}{4}=\dfrac{y-1}{6}\Leftrightarrow3x-2y+5=0\)

Khoảng cách từ \(D\) đến \(AB\):

\(d\left(D;AB\right)=\dfrac{\left|3\left(-2n-1\right)-2n+5\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|-8n+2\right|}{\sqrt{13}}\)

\(S_{ABC}=\dfrac{1}{2}.\dfrac{\left|-8n+2\right|}{\sqrt{13}}.2\sqrt{13}=50\)

\(\Rightarrow\left|4n-1\right|=25\)

\(\Leftrightarrow\left[{}\begin{matrix}n=-6\\n=\dfrac{13}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=\left(11;-6\right)\\N=\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

 

28 tháng 4 2021

Câu nèo thé ?_?

28 tháng 4 2021

Câu nào thế bạn????

Câu 1: 

TXĐ: D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

1 tháng 11 2021

Mình cảm ơn ạ

NV
6 tháng 2 2021

ĐKXĐ: ...

Với \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) ko phải nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2-\dfrac{1}{2x+y}=\dfrac{2}{\sqrt{y}}\\2+\dfrac{1}{2x+y}=\dfrac{2}{\sqrt{x}}\end{matrix}\right.\)

Lần lượt cộng vế với vế và trừ vế cho vế 2 pt ta được:

\(\left\{{}\begin{matrix}2=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\\\dfrac{1}{2x+y}=\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)

Nhân vế với vế:

\(\dfrac{2}{2x+y}=\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)\)

\(\Leftrightarrow\dfrac{2}{2x+y}=\dfrac{1}{x}-\dfrac{1}{y}\)

\(\Leftrightarrow2x^2+xy-y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow...\)

9 tháng 2 2021

Em cảm ơn ạ.

15 tháng 10 2021

a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)