K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2017

Biến đổi:

\(8B=8xyz[(xy+yz+xz)(x+y+z)-xyz]=8xyz(xy+yz+xz-xyz)\)

Áp dụng BĐT Am-Gm dạng \(ab\leq\left(\frac{a+b}{2}\right)^2\Rightarrow 8B\leq\left(\frac{xy+yz+xz+7xyz}{2}\right)^2\)

Bằng Am-Gm dễ dàng chứng minh \(xy+yz+xz\leq\frac{(x+y+z)^2}{3}=\frac{1}{3};xyz\leq\frac{1}{27}\)

Do đó: \(8B\leq\frac{64}{729}\Rightarrow B_{max}=\frac{8}{729}\) \(\Rightarrow 9^3k=\frac{8}{729}.9^3=8\)

31 tháng 3 2021

\(\left|1-2x\right|< 5-x\)

\(\Leftrightarrow-\left(5-x\right)< 1-2x< 5-x\)

\(\Leftrightarrow x-5< 1-2x< 5-x\)

\(\Leftrightarrow-4< x< 2\)

31 tháng 3 2021

Ta có : | 1 − 2 x | < 5 − x

=> − ( 5 − x ) < 1 − 2 x < 5 − x

=>  x − 5 < 1 − 2 x < 5 − x

=> − 4 < x < 2

Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)

hay a=3

Vậy: (d'): y=3x+b

Thay x=4 và y=-5 vào (d'), ta được:

b+12=-5

hay b=-17

15 tháng 10 2021

a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)

9 tháng 8 2016

Đk:\(3x+1\ge0\)

\(\left(1\right)\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\left(2\right)\)

Đặt \(\sqrt{3x+1}=-\left(2y-3\right)\Rightarrow\left(2y-3\right)^2=3x+1\left(y\le\frac{3}{2}\right)\)

\(\left(2\right)\Leftrightarrow\left(2x-3\right)^2=2y+x+1\)

Ta có hệ:

\(\begin{cases}\left(2x-3\right)^2=2y+x+1\\\left(2y-3\right)^2=3x+1\end{cases}\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-5=0\right)\)

\(\Leftrightarrow x=y;x=\frac{5}{2}-y\).Thay vào hệ trên là ok

2)Đặt \(\sqrt[3]{81x-8}=3y-2\Rightarrow81x-8=27y^3-54y^2+36y-8\)

\(\Rightarrow y^3-2y^2+\frac{4}{3}y=3x\)

Khi đó ta có hệ sau: 

\(\begin{cases}3y-2=x^3-2x^2+\frac{4}{3}x-2\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)\(\Leftrightarrow\begin{cases}x^3-2x^2+\frac{4}{3}x=3y\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)

Đối xứng nhé, ta chỉ cần  trừ vế theo vế hai phương trình của hệ là xong

 

11 tháng 8 2016

what

24 tháng 11 2019

7x^2 - 42x + 63 = 0

<=>7.(x^2 - 6x + 9) = 0

<=>7.(x - 3)^2 = 0

<=>x - 3 = 0

<=> x = 3

NV
23 tháng 11 2021

1.1

Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:

\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b.

Pt có nghiệm kép khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

15 tháng 12 2021

\(ĐK:x\ge5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)

\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)

15 tháng 12 2021

camon nhìu nhaa :>