Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
Bài 1:
a) Ta có: AB // CD (ABCD là hình chữ nhật; AB,CD là cạnh đối);
=> DBA = BDC (so le trong) (1)
Xét: \(\Delta\) AHB và \(\Delta\) BCD có:
AHB = BCD =900 (gt)
DBA = BDC (theo (1))
Do đó \(\Delta\) AHB đồng dạng \(\Delta\) BCD (g-g)
b) Ta có: *AB = CD = 12(cm)
* \(\Delta\) BCD vuông tai C(gt)
=> BC2 + CD2= BD2
hay 92 + 122 = BD2
=> BD2 = 225
=> BD = \(\sqrt{225}\) =15
Ta có: \(\Delta\) AHB đồng dạng \(\Delta\) BCD (Cmt)
=> \(\dfrac{AH}{BC}\) = \(\dfrac{AB}{BD}\) hay \(\dfrac{AH}{9}\) = \(\dfrac{12}{15}\)
=> AH = \(\dfrac{9.12}{15}\) = 7,2
c) Ta có: \(\Delta\) AHB vuông tại A(gt)
=> HB2 = AB2 - AH2
hay HB2 = 122 - 7,22 = 92,16
=> HB = \(\sqrt{92,16}\) = 9,6
Ta có : S\(\Delta AHB\) =\(\dfrac{AH.HB}{2}\) = \(\dfrac{7,2.9,6}{2}\) = 34.56
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Bài 1: (4n + 3 )2 -25 = ( 4n+ 3 - 5 ) ( 4n + 3 + 5 ) = ( 4n - 2 ) ( 4n + 8 )
=> ( 4n - 2 ) ( 4n + 8 ) chia hết cho 8 với \(\forall n\)
=> (4n+3)2 - 25 chia hết cho 8 với mọi n
Bài 2: (2n + 3)2 - 9 = ( 2n + 3 + 3 ) ( 2n+3-3) = (2n+6) . 2n = 4n2 +6 chia hết cho 4 với \(\forall n\)
Vậy (2n+3)2 - 9 chia hết cho 4 với mọi n
Bài 3: m2 - n2 = ( m - n ) ( m + n )
b) -16 + (x-3)2 = (x-3)2 -16 = ( x - 3 -4 ) ( x-3+4 ) = (x - 7 ) ( x +1 )
f(1) = (3.18 - 2.16 + 15 + 2.14 - 12 +1 )5 = a0 + a1.1 + a2.12 +....+ a40.140
<=> 1024 = a0 + a1 + a2 + .... + a40
Lười vẽ hình quá nên làm tạm câu 5 thôi nhé:)
Ta có:
\(A=-2x^2-10y^2+4xy+4x+4y+2013\)
\(A=\left(-2x^2-2y^2-2+4xy+4x-4y\right)-\left(8y^2-8y+2\right)+4+2013\)
\(A=-2\left(x^2+y^2+1-2xy-2x+2y\right)-2\left(4y^2-4y+1\right)+2017\)
\(A=-2\left(y-x+1\right)^2-2\left(2y-1\right)^2+2017\le2017\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-2\left(y-x+1\right)^2=0\\-2\left(2y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y-x+1=0\\y=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1=\frac{1}{2}+1=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy \(Max_A=2017\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Cho hỏi gửi hình lên kiểu gì vậy??
Nguyễn Minh Đăng⁰⁶ : ib riêng nhá