Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=\dfrac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)}}=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}}=\sqrt{\sqrt{a}-\sqrt{b}}\\ b,=\dfrac{\sqrt{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}}{\sqrt{\sqrt{x}+\sqrt{3}}}\cdot\dfrac{\sqrt{3}}{\sqrt{\sqrt{x}-\sqrt{3}}}\\ =\sqrt{3}\\ c,=2y^2\cdot\dfrac{x^2}{\left|2y\right|}=\dfrac{2x^2y^2}{-2y}=-x^2y\\ d,=5xy\cdot\dfrac{\left|5x\right|}{y^2}=\dfrac{-25x^2y}{y^2}=\dfrac{-25x^2}{y}\)
Bài 2:
a: Ta có: \(A=\left(3\sqrt{18}+2\sqrt{50}-4\sqrt{72}\right):8\sqrt{2}\)
\(=\left(9\sqrt{2}+10\sqrt{2}-24\sqrt{2}\right):8\sqrt{2}\)
\(=\dfrac{-5\sqrt{2}}{8\sqrt{2}}=-\dfrac{5}{8}\)
b: Ta có: \(B=\left(-4\sqrt{20}+5\sqrt{500}-3\sqrt{45}\right):\sqrt{5}\)
\(=\left(-8\sqrt{5}+50\sqrt{5}-9\sqrt{5}\right):\sqrt{5}\)
\(=49\)
Lần sau bạn chú ý viết đầy đủ đề.
1.
\(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{9+4\sqrt{5}-\sqrt{5-2\sqrt{4.5}+4}}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{(\sqrt{5}-\sqrt{4})^2}}=\sqrt{9+4\sqrt{5}-(\sqrt{5}-\sqrt{4})}\)
\(=\sqrt{9+4\sqrt{5}-\sqrt{5}+2}=\sqrt{11+3\sqrt{5}}\)
2.
\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}=\sqrt{8-2\sqrt{7}-\sqrt{7+2\sqrt{7}+1}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{(\sqrt{7}+1)^2}}\)
\(=\sqrt{8-2\sqrt{7}-\sqrt{7}-1}=\sqrt{7-3\sqrt{7}}\)
1a + 2a + 3a:5a
= 3a + \(\frac{3}{5}\)a
= 3\(\frac{3}{5}\)a = \(\frac{18}{5}\)a
K nha
Ta có: \(\left\{{}\begin{matrix}8x-7y=5\\12x+13y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24x-21y=15\\24x+26y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-47y=31\\8x-7y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-31}{47}\\8x=5+7y=5+7\cdot\dfrac{-31}{47}=\dfrac{18}{47}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{188}\\y=\dfrac{-31}{47}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{9}{188};\dfrac{-31}{47}\right)\)
5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
=1
ko hiểu
Nó lại bị lag