Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{16}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)
Suy ra: \(25x=xy\Rightarrow y=25\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)
Suy ra: \(13x-13y=3x+3y\)
Thế y vào đẳng thức trên:
\(13x-325=3x+75\)
Suy ra: \(10x=325+75=400\Rightarrow x=40\)
Vậy ........
cả hai cái mũ 2 đều \(\ge\)0 với mọi x, y
Mà tổng của chúng = 0
=> (x-11+y)2=(x-y-4)2=0
=> x-11+y = 0 => x+y = 11 (1)
x-y-4 = 0 => x-y = 4 (2)
(1), (2) => (tổng hiệu) x = 7,5 ; y = 3,5
\(\left(\frac{3}{4}x-\frac{9}{16}\right)\cdot\left(1,5+\frac{-3}{5}:x\right)=0\\ \Rightarrow\left[{}\begin{matrix}\frac{3}{4}x-\frac{9}{16}=0\\1,5+\frac{-3}{5}:x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{4}x=\frac{9}{16}\\\frac{-3}{5}:x=-1,5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{2}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{4};\frac{2}{5}\right\}\)
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
\(\left(x-7\right)^{10}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{10}\left[1-\left(x-7\right)^{x+1}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{10}=0\\1-\left(x-7\right)^{x+1}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)^{x+1}=1\end{cases}}\)
Xét \(\left(x-7\right)^{x+1}=1\)ta có:
TH1: \(x+1=0\)và \(x-7\inℤ\)\(\Rightarrow x=-1\left(tm\right)\)
TH2: \(x-7=-1\)và \(x+1\)là số dương chẵn \(\Rightarrow x=6\left(tm\right)\)
TH3: \(x-7=1\)và \(x+1\inℕ^∗\) \(\Rightarrow x=8\left(tm\right)\)
Vậy \(x\in\left\{-1;6;7;8\right\}\)