K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) suy ra x, y, z >0 và x + y + z = 2016

BĐT \(\Leftrightarrow\frac{\frac{1}{yz}}{\frac{1}{x^2}\left(\frac{3}{y}+\frac{1}{z}\right)}+\frac{\frac{1}{zx}}{\frac{1}{y^2}\left(\frac{3}{z}+\frac{1}{x}\right)}+\frac{\frac{1}{xy}}{\frac{1}{z^2}\left(\frac{3}{x}+\frac{1}{y}\right)}\ge504\)

\(\Leftrightarrow\frac{x^2}{3z+y}+\frac{y^2}{3x+z}+\frac{z^2}{3y+x}\ge504\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel suy ra:

\(VT\ge\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}=\frac{2016}{4}=504\) (đpcm)

Đẳng thức xảy ra khi x = y = z = 672 hay \(a=b=c=\frac{1}{672}\)

a: Để A là tập con của B thì 2m+1<5

=>m<2

b: Để B là tập con của A thì 2m+1>5

=>m>2

=-a-b+c+a+b+c

=2c

30 tháng 11 2019

Ta có: Tập hợp A có 5 phần tử

\(\Rightarrow\) Tập hợp A có \(2^5=32\) tập hợp con (áp dụng công thức)

NV
14 tháng 11 2021

a.

\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)

\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)

\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)

b.

\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)

\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)

c.

\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)

\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)

30 tháng 10 2021

Bài 4:

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)