Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 1:Viết thành hằng đẳng thức
\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)
tới đây dễ rùi nhé
cách 2:\(ĐKXĐ:x\ge-2010\)
đặt \(\sqrt{x+2010}=t\left(t>0\right)\)
\(\Rightarrow x^2+t=t^2-x\)
\(\Rightarrow x^2-t^2+x+t=0\)
\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)
tự làm tiếp
cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)
\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)
\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)
\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)
Đến đây tách căn ra ta đc 2 TH (1) và (2)
\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)
\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp
\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)
\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp nhé
\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)
Ghi sai đề đúng ko bạn? Bài này đúng hình như là chứng minh nó có nghiệm hay vô nghiệm chứ???
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Đặt t = x2 +x +1 => x2 +x +2 = t +1
=> t2 +t -12 = 0
<=> t = 3; t=-4
= x = 1; x = -2,
Đặt y = x\(^2\)+x+1
Phương trình đã cho tương đương với :
y(y+1)-12=0
\(\Leftrightarrow\) y\(^2\)+y-12=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=-4\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2+x+1=-4\\x^2+x+1=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2+x+5x=0\left(1\right)\\x^2+x-2=0\end{matrix}\right.\) (1)Vô nghiệm.
\(\Leftrightarrow\) x\(^2\) +x-2 =0 \(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là 1 và -2 .