Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Áp dụng BĐT AM-GM ta có:
\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)
Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)
Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)
a.
\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)
\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)
\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)
b.
\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)
\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)
c.
\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)
\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)
UCT hả e. Lâu rồi k dùng pp này có lẽ quên r :3
Ta có BĐT phụ \(\sqrt{a^2+a-1}\le\dfrac{3}{2}a-\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{a^2+a-1}-\left(\dfrac{3}{2}a-\dfrac{1}{2}\right)\le0\)
\(\Leftrightarrow\dfrac{a^2+a-1-\left(\dfrac{3}{2}a-\dfrac{1}{2}\right)^2}{\sqrt{a^2+a-1}+\left(\dfrac{3}{2}a-\dfrac{1}{2}\right)}\le0\)
\(\Leftrightarrow\dfrac{-\dfrac{5}{4}\left(a-1\right)^2}{\sqrt{a^2+a-1}+\left(\dfrac{3}{2}a-\dfrac{1}{2}\right)}\le0\)*đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(\sqrt{b^2+b-1}\le\dfrac{3}{2}b-\dfrac{1}{2};\sqrt{c^2+c-1}\le\dfrac{3}{2}c-\dfrac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{3}{2}\left(a+b+c\right)-\dfrac{1}{2}\cdot3=3=VP\)
Khi \(a=b=c=1\)
Thắc mắc thì ib nhé rảnh t sẽ giải đáp :(
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=y\ge0\)
\(\Rightarrow4x^2+12xy=27y^2\)
\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)
a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)
\(f\left(-2\right)=-8a+4b-2c+d\)
\(=-8a+4\left(3a+c\right)-2c+d\)
\(=-8a+12a+4c-2c+d\)
\(=4a+2c+d\)
=>f(1)=f(-2)
b: Đặt \(h\left(x\right)=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
Đặt g(x)=0
\(\Leftrightarrow x^2+5x+1=0\)
\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)
Do đó PT có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)
=>h(x) và g(x) khôg có nghiệm chung
=-a-b+c+a+b+c
=2c